Drought conditions affect ozone air quality, potentially altering multiple terms in the O 3 mass balance equation. Here, we present a multiyear observational analysis using data collected before, during, and after the record-breaking California drought (2011−2015) at the O 3 -polluted locations of Fresno and Bakersfield near the Sierra Nevada foothills. We separately assess drought influences on O 3 chemical production (PO 3 ) from O 3 concentration. We show that isoprene concentrations, which are a source of O 3 -forming organic reactivity, were relatively insensitive to early drought conditions but decreased by more than 50% during the most severe drought years (2014−2015), with recovery a function of location. We find drought− isoprene effects are temperature-dependent, even after accounting for changes in leaf area, consistent with laboratory studies but not previously observed at landscape scales with atmospheric observations. Drought-driven decreases in organic reactivity are contemporaneous with a change in dominant oxidation mechanism, with PO 3 becoming more NO x -suppressed, leading to a decrease in PO 3 of ∼20%. We infer reductions in atmospheric O 3 loss of ∼15% during the most severe drought period, consistent with past observations of decreases in O 3 uptake by plants. We consider drought-related trends in O 3 variability on synoptic time scales by analyzing statistics of multiday high-O 3 events. We discuss implications for regulating O 3 air pollution in California and other locations under more prevalent drought conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.