Strain elastography was used to monitor response to neoadjuvant chemotherapy (NAC) in 92 patients with biopsy-proven, locally advanced breast cancer. Strain elastography data were collected before, during, and after NAC. Relative changes in tumor strain ratio (SR) were calculated over time, and responder status was classified according to tumor size changes. Statistical analyses determined the significance of changes in SR over time and between response groups. Machine learning techniques, such as a naïve Bayes classifier, were used to evaluate the performance of the SR as a marker for Miller-Payne pathological endpoints. With pathological complete response (pCR) as an endpoint, a significant difference (
P
< .01) in the SR was observed between response groups as early as 2 weeks into NAC. Naïve Bayes classifiers predicted pCR with a sensitivity of 84%, specificity of 85%, and area under the curve of 81% at the preoperative scan. This study demonstrates that strain elastography may be predictive of NAC response in locally advanced breast cancer as early as 2 weeks into treatment, with high sensitivity and specificity, granting it the potential to be used for active monitoring of tumor response to chemotherapy.
This multicenter international effort independently validates the prognostic value of the IR-PCa subclassification in ADT-naïve patients across all radical treatment modalities. It is unlikely that treatment intensification will meaningfully improve oncologic outcomes for FIR men.
Purpose of Review
Near infrared spectroscopy (NIRS) is a non-invasive optical technique that uses near infrared light to detect the oxygenation status and hemodynamics of various organs. This article reviews the use of NIRS for the non-invasive assessment of lower urinary tract dysfunction (LUTD). Applications include assessment of bladder outlet obstruction, overactive and underactive bladder, neurogenic LUTD, pediatric LUTD, interstitial cystitis/bladder pain syndrome, and pelvic floor dysfunction. In addition, the article describes how NIRS is elucidating more about the brain-bladder connection. Technological advancements enabling these applications are also discussed.
Recent Findings
While evidence exists for the application of NIRS throughout a wide range of LUTD, most of these studies are limited by small sample sizes without matched controls. Investigators have experienced problems with reproducibility and motion artifacts contaminating the data. The literature is also becoming dated with use of older technology.
Summary
NIRS holds potential for the non-invasive acquisition of urodynamic information over time scales and activities not previously accessible, but it is not yet ready for use in routine clinical practice. Advances in wearable technology will address some of the current limitations of NIRS, but to realize its full potential, larger scale validation studies will be required. Moreover, multidisciplinary collaboration between clinicians, scientists, engineers, and patient advocates will be critical to further optimize these systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.