Real-time observation of DNA strand synthesis by using a supercritical angle fluorescence detection apparatus for surface-selective fluorescence detection is described. DNA template molecules were immobilized on a glass surface and the synthesis of the complementary strand was observed after addition of enzyme, dTTP, dATP, dGTP, and fluorescently labeled dCTP (d, deoxy; TP, triphosphate; T, A, G, and C, nucleobases). The fluorescence increase during the Klenow-fragment-catalyzed polymerization depends on the number of labeled dCTP nucleotides incorporated. The efficiency of this reaction is of the same order of magnitude as that of a bimolecular hybridization reaction.
We describe the rapid detection of single nucleotide polymorphisms (SNPs) by real-time observation of primer elongation. The enzymatic elongation of surface-bound primers is monitored by detecting the increase of surface-bound fluorescence caused by the incorporation of Cy5-labelled deoxycytidine 5'-triphosphate residues (Cy5-dCTPs) into the corresponding strand. In order to discriminate against the fluorescence from unbound Cy5-dCTPs, the detection volume was restricted to the surface by collecting supercritical-angle fluorescence. The efficiency of enzymatic double-stranded DNA synthesis is governed by the complementarity of the primer and template. An SNP in the sequence of the primer obstructs its elongation increasingly with decreased distance of the mismatch to the 3' end of the primer. By real-time fluorescence detection during primer elongation, SNPs can be detected within a few minutes, which is significantly faster than in experiments where the fluorescence is measured after completion of the reaction. We demonstrate the efficiency of the method by detecting an SNP in the ErbB2 gene that is involved in causing a higher risk of breast cancer.
Utilising the strong affinity between nucleic acids and an intercalating pyrene derivate, a novel efficient method for unspecific immobilisation of double-stranded DNA on to solid support for applications in bioanalytic, biophysics and microbiology is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.