Soil fungi link above and belowground carbon (C) fluxes through their interactions with plants and contribute to C and nutrient dynamics through the production, turnover, and activity of fungal hyphae. Despite their importance to ecosystem processes, estimates of hyphal production and turnover rates are relatively uncommon, especially in temperate hardwood forests. We sequentially harvested hyphal ingrowth bags to quantify the rates of Dikarya (Ascomycota and Basidiomycota) hyphal production and turnover in three hardwood forests in the Midwestern USA, where plots differed in their abundance of arbuscular-(AM) vs. ectomycorrhizal-(ECM) associated trees. Hyphal production rates increased linearly with the percentage of ECM trees and annual production rates were 66% higher in ECM-than AM-dominated plots. Hyphal turnover rates did not differ across the mycorrhizal gradient (plots varying in their abundance of AM vs. ECM trees), suggesting that the greater fungal biomass in ECM-dominated plots relates to greater fungal production rather than slower fungal turnover. Differences in hyphal production across the gradient aligned with distinctly different fungal communities and activities. As ECM trees increased in dominance, fungi inside ingrowth bags produced more extracellular enzymes involved in degrading nitrogen (N)-bearing relative to Cbearing compounds, suggesting greater fungal (and possibly plant) N demand in ECM-dominated soils. Collectively, our results demonstrate that shifts in temperate tree species composition that result in changes in the dominant type of mycorrhizal association may have strong impacts on Dikarya hyphal production, fungal community composition and extracellular enzyme activity, with important consequences for soil C and N cycling.
In this case study analysis, we identified fungal traits that were associated with the responses of taxa to 4 global change factors: elevated CO2, warming and drying, increased precipitation, and nitrogen (N) enrichment. We developed a trait-based framework predicting that as global change increases limitation of a given nutrient, fungal taxa with traits that target that nutrient will represent a larger proportion of the community (and vice versa). In addition, we expected that warming and drying and N enrichment would generate environmental stress for fungi and may select for stress tolerance traits. We tested the framework by analyzing fungal community data from previously published field manipulations and linking taxa to functional gene traits from the MycoCosm Fungal Portal. Altogether, fungal genera tended to respond similarly to 3 elements of global change: increased precipitation, N enrichment, and warming and drying. The genera that proliferated under these changes also tended to possess functional genes for stress tolerance, which suggests that these global changes—even increases in precipitation—could have caused environmental stress that selected for certain taxa. In addition, these genera did not exhibit a strong capacity for C breakdown or P acquisition, so soil C turnover may slow down or remain unchanged following shifts in fungal community composition under global change. Since we did not find strong evidence that changes in nutrient limitation select for taxa with traits that target the more limiting nutrient, we revised our trait-based framework. The new framework sorts fungal taxa into Stress Tolerating versus C and P Targeting groups, with the global change elements of increased precipitation, warming and drying, and N enrichment selecting for the stress tolerators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.