Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Terms of use: Documents in AbstractThe deployment of battery-powered electric bus systems within the public transportation sector plays an important role to increase energy efficiency and to abate emissions. Rising attention is given to bus systems using fast charging technology. This concept requires a comprehensive infrastructure to equip bus routes with charging stations. The combination of charging infrastructure and bus batteries needs a reliable energy supply to maintain a stable bus operation even under demanding conditions. An efficient layout of the charging infrastructure and an appropriate dimensioning of battery capacity are crucial to minimize the total cost of ownership and to enable an energetically feasible bus operation. In this work, the central issue of jointly optimizing the charging infrastructure and battery capacity is described by a capacitated set covering problem. A mixed-integer linear optimization model is developed to determine the minimum number and location of required charging stations for a bus network as well as the adequate battery capacity for each bus line of the network. The bus energy consumption for each route segments is determined based on individual route, bus type, traffic and other information. Different scenarios are examined in order to assess the influence of charging power, climate and changing operating conditions. The findings reveal significant differences in terms of needed infrastructure depending on the scenarios considered. Moreover, the results highlight a trade-off between battery size and charging infrastructure under different operational and infrastructure conditions. The paper addresses upcoming challenges for transport authorities during the electrification process of the bus fleets and sharpens the focus on infrastructural issues related to the fast charging concept. JEL codes: C61; L92; R42
Many public transport authorities have a great interest in introducing zero-emission electric buses. However, the transformation process from diesel to electric bus systems opens up a vast design space which seems prohibitive for a systematic decision making process. We present a holistic design methodology to identify the 'most suitable system solution' under given strategic and operational requirements. The relevant vehicle technologies and charging systems are analysed and structured using a morphological matrix. A modular simulation model is introduced which takes technical and operational aspects into account. The model can be used to determine a feasible electric bus system. The technology selection is based on a detailed economic analysis which is conducted by means of a total cost of ownership (TCO) model. To cope with uncertainties in forecasting, a stochastic modelling of critical input parameters is applied and three different future scenarios are evaluated. The applicability of the model was verified in a pilot project in Berlin and the methodology was applied to a realistic operational scenario. Our results indicate that electric bus systems are technically feasible and can become economically competitive from the year 2025 under the conditions examined.
The air-conditioning and heating of the passenger cabin in an electric bus leads to a significant increase of the auxiliaries' energy consumption. Due to limited battery capacity, the daily operating range of electric buses depends considerably on the ambient climate. In particular, heating is an energy-intensive process since no waste heat from the IC engine is available. Energetic simulations show drastic range reductions when the interior is heated by an electric resistance heater. In contrast, the range reduction can be limited noticeably if a heat pump is utilised. Therefore, the selection of heating and air-conditioning (HVAC) systems has a significant impact not only on the range but also on the operating costs of an electric vehicle.The aim of this study is to conduct a cost analysis for different HVAC systems of an electric city bus. The economic assessment is based on comprehensive energy consumption simulation and a life-cycle costing approach considering all expenses of the operation period.The examination reveals that the heat pump systems feature significant energy savings compared to conventional HVAC systems. However, over a life span of twelve years, the current high acquisition cost of a heat pump system is not compensated when only considering direct cost.
Public transport authorities particularly in conurbations and mega-cities undertake growing endeavours to improve their CO 2 footprint and become less dependent on fossil fuels. Electric buses are an obvious alternative to conventional diesel vehicles. However, public transport authorities face several different options of electric bus technologies and different system solutions to implement electric buses. These options have specific assets and drawbacks concerning technology, capital and operational cost. Despite the importance of this issue only very limited research has been published on that matter so far.This study presents a technology assessment of battery-electric public bus systems based on technical and economical key performance indicators. The methodology is applied to an electric bus project for the city of Berlin. To facilitate the selection of a suitable technology a step-wise approach is applied. Firstly, an energetic simulation model has been set up to forecast the needed energy for daily service based on bus operating profiles in Berlin. Secondly, a pre-selection of potential electric bus solutions is made by qualitative evaluation of different systems using defined technical and economic indicators. Thirdly, a detailed comparison is made between the remaining technological alternatives taking monetary-based aspects into account. The economic analysis is conducted by means of a total cost of ownership (TCO) approach.In conclusion the examination reveals that under Berlin conditions inductive opportunity charging technology fulfills the comprehensive system's requirements and shows relatively low TCO values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.