Tunable and abrupt thermal quenching of photoluminescence by increasing temperature has been observed for the blue band in high-resistivity Zn-doped GaN. The photoluminescence intensity dropped by several orders of magnitude within a few Kelvins, and the temperature at which that drop occurred could be tuned by changing the incident light intensity. Modeling the system with rate equations for competing electron-hole recombination flows through three defect species, one of which is a nonradiative deep donor, gives results consistent with these observations.
Ferroelectric materials are heavily used in electro-mechanics and electronics. Inside the ferroelectric, domain walls separate regions in which the spontaneous polarization is differently oriented. Properties of ferroelectric domain walls can differ from those of the domains themselves, leading to new exploitable phenomena. Even more exciting is that a non-ferroelectric material may have domain boundaries that are ferroelectric. Many materials possess translational antiphase boundaries. Such boundaries could be interesting entities to carry information if they were ferroelectric. Here we show first that antiphase boundaries in antiferroelectrics may possess ferroelectricity. We then identify these boundaries in the classical antiferroelectric lead zirconate and evidence their polarity by electron microscopy using negative spherical-aberration imaging technique. Ab initio modelling confirms the polar bi-stable nature of the walls. Ferroelectric antiphase boundaries could make high-density non-volatile memory; in comparison with the magnetic domain wall memory, they do not require current for operation and are an order of magnitude thinner.
Ferroelectrics are widespread in technology, being used in electronics and communications, medical diagnostics and industrial automation. However, extension of their operational temperature range and useful properties is desired. Recent developments have exploited ultrathin epitaxial films on lattice-mismatched substrates, imposing tensile or compressive biaxial strain, to enhance ferroelectric properties. Much larger hydrostatic compression can be achieved by diamond anvil cells, but hydrostatic tensile stress is regarded as unachievable. Theory and ab initio treatments predict enhanced properties for perovskite ferroelectrics under hydrostatic tensile stress. Here we report negative-pressure-driven enhancement of the tetragonality, Curie temperature and spontaneous polarization in freestanding PbTiO3 nanowires, driven by stress that develops during transformation of the material from a lower-density crystal structure to the perovskite phase. This study suggests a simple route to obtain negative pressure in other materials, potentially extending their exploitable properties beyond their present levels.
Using the dynamical matrix of a crystal obtained from ab initio calculations, we have evaluated for the first time the strength of the dynamic flexoelectric effect and found it comparable to that of the static bulk flexoelectric effect, in agreement with earlier order-of-magnitude estimates. We also proposed a method of evaluation of these effects directly from the simulated phonon spectra. This method can also be applied to the analysis of the experimental phonon spectra, being currently the only one enabling experimental characterization of the static bulk flexoelectric effect.
Enhancement of ferroelectric properties, both spontaneous polarization and Curie temperature under negative pressure had been predicted in the past from first principles and recently confirmed experimentally. In contrast, piezoelectric properties are expected to increase by positive pressure, through polarization rotation. Here we investigate the piezoelectric response of the classical PbTiO3, Pb(Zr,Ti)O3 and BaTiO3 perovskite ferroelectrics under negative pressure from first principles and find significant enhancement. Piezoelectric response is then tested experimentally on free-standing PbTiO3 and Pb(Zr,Ti)O3 nanowires under self-sustained negative pressure, confirming the theoretical prediction. Numerical simulations verify that negative pressure in nanowires is the origin of the enhanced electromechanical properties. The results may be useful in the development of highly performing piezoelectrics, including lead-free ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.