We discuss the design, implementation and performance of a novel platform for the production and optical control of ultra-low interfacial tension droplets in the 1-10 micron regime. A custom-designed, integrated microfluidic system allows the production of oil-in-water emulsion droplets of controllable size. This provides an optimised physical platform in which individual droplets are selected, trapped and shaped by holographic optical tweezers (HOTs) via extended optical landscaping. The 3D structure of the shaped droplet is interrogated by a combination of conventional brightfield imaging and fluorescent structured-illumination sectioning. We detail the problems and limitations of closedloop holographic control of droplet shape.
Abstract:We demonstrate experimentally that direct analysis of compressively sensed signals provides sufficient information to achieve high-precision phase lock to a periodicallymoving structure, without any need to ever reconstruct an image of the target object.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.