We present an analysis of the galaxy-scale gaseous outflows from the FIRE (Feedback in Realistic Environments) simulations. This suite of hydrodynamic cosmological zoom simulations resolves formation of star-forming giant molecular clouds to z = 0, and features an explicit stellar feedback model on small scales. Our simulations reveal that high redshift galaxies undergo bursts of star formation followed by powerful gusts of galactic outflows that eject much of the ISM and temporarily suppress star formation. At low redshift, however, sufficiently massive galaxies corresponding to L*-progenitors develop stable disks and switch into a continuous and quiescent mode of star formation that does not drive outflows far into the halo. Mass-loading factors for winds in L*-progenitors are η ≈ 10 at high redshift, but decrease to η 1 at low redshift. Although lower values of η are expected as halos grow in mass over time, we show that the strong suppression of outflows with decreasing redshift cannot be explained by mass evolution alone. Circumgalactic outflow velocities are variable and broadly distributed, but typically range between one and three times the circular velocity of the halo. Much of the ejected material builds a reservoir of enriched gas within the circumgalactic medium, some of which could be later recycled to fuel further star formation. However, a fraction of the gas that leaves the virial radius through galactic winds is never regained, causing most halos with mass M h ≤ 10 12 M to be deficient in baryons compared to the cosmic mean by z = 0.
We use high-resolution cosmological zoom-in simulations from the Feedback in Realistic Environment (FIRE) project to study the galaxy mass-metallicity relations (MZR) from z = 0-6. These simulations include explicit models of the multi-phase ISM, star formation, and stellar feedback. The simulations cover halo masses M halo = 10 9 -10 13 M and stellar masses M * = 10 4 -10 11 M at z = 0 and have been shown to produce many observed galaxy properties from z = 0-6. For the first time, our simulations agree reasonably well with the observed mass-metallicity relations at z = 0-3 for a broad range of galaxy masses. We predict the evolution of the MZR from z = 0-6, as log( 04, for gas-phase and stellar metallicity, respectively. Our simulations suggest that the evolution of MZR is associated with the evolution of stellar/gas mass fractions at different redshifts, indicating the existence of a universal metallicity relation between stellar mass, gas mass, and metallicities. In our simulations, galaxies above M * = 10 6 M are able to retain a large fraction of their metals inside the halo, because metal-rich winds fail to escape completely and are recycled into the galaxy. This resolves a long-standing discrepancy between "sub-grid" wind models (and semi-analytic models) and observations, where common sub-grid models cannot simultaneously reproduce the MZR and the stellar mass functions.
We study the distribution of cold dark matter (CDM) in cosmological simulations from the FIRE (Feedback In Realistic Environments) project, for M * ∼ 10 4−11 M galaxies in M h ∼ 10 9−12 M halos. FIRE incorporates explicit stellar feedback in the multi-phase ISM, with energetics from stellar population models. We find that stellar feedback, without "fine-tuned" parameters, greatly alleviates small-scale problems in CDM. Feedback causes bursts of star formation and outflows, altering the DM distribution. As a result, the inner slope of the DM halo profile (α) shows a strong mass dependence: profiles are shallow at M h ∼ 10 10 − 10 11 M and steepen at higher/lower masses. The resulting core sizes and slopes are consistent with observations. This is broadly consistent with previous work using simpler feedback schemes, but we find steeper mass dependence of α, and relatively late growth of cores. Because the star formation efficiency M * /M h is strongly halo mass dependent, a rapid change in α occurs around M h ∼ 10 10 M (M * ∼ 10 6 − 10 7 M ), as sufficient feedback energy becomes available to perturb the DM. Large cores are not established during the period of rapid growth of halos because of ongoing DM mass accumulation. Instead, cores require several bursts of star formation after the rapid buildup has completed. Stellar feedback dramatically reduces circular velocities in the inner kpc of massive dwarfs; this could be sufficient to explain the "Too Big To Fail" problem without invoking non-standard DM. Finally, feedback and baryonic contraction in Milky Way-mass halos produce DM profiles slightly shallower than the Navarro-Frenk-White profile, consistent with the normalization of the observed Tully-Fisher relation.
Observed metallicities of globular clusters reflect physical conditions in the interstellar medium of their highredshift host galaxies. Globular cluster systems in most large galaxies display bimodal color and metallicity distributions, which are often interpreted as indicating two distinct modes of cluster formation. The metal-rich and metal-poor clusters have systematically different locations and kinematics in their host galaxies. However, the red and blue clusters have similar internal properties, such as the masses, sizes, and ages. It is therefore interesting to explore whether both metal-rich and metal-poor clusters could form by a common mechanism and still be consistent with the bimodal distribution. We present such a model, which prescribes the formation of globular clusters semi-analytically using galaxy assembly history from cosmological simulations coupled with observed scaling relations for the amount and metallicity of cold gas available for star formation. We assume that massive star clusters form only during mergers of massive gas-rich galaxies and tune the model parameters to reproduce the observed distribution in the Galaxy. A wide, but not entire, range of model realizations produces metallicity distributions consistent with the data. We find that early mergers of smaller hosts create exclusively blue clusters, whereas subsequent mergers of more massive galaxies create both red and blue clusters. Thus bimodality arises naturally as the result of a small number of late massive merger events. This conclusion is not significantly affected by the large uncertainties in our knowledge of the stellar mass and cold gas mass in high-redshift galaxies. The fraction of galactic stellar mass locked in globular clusters declines from over 10% at z > 3 to 0.1% at present.
Galaxy formation models are now able to reproduce observed relations such as the relation between galaxies' star formation rates (SFRs) and stellar masses (M * ) and the stellar masshalo mass relation. We demonstrate that comparisons of the short-timescale variability in galaxy SFRs with observational data provide an additional useful constraint on the physics of galaxy formation feedback. We apply SFR indicators with different sensitivity timescales to galaxies from the Feedback in Realistic Environments (FIRE) simulations. We find that the SFR-M * relation has a significantly greater scatter when the Hα-derived SFR is considered compared with when the far-ultraviolet (FUV)-based SFR is used. This difference is a direct consequence of bursty star formation because the FIRE galaxies exhibit order-of-magnitude SFR variations over timescales of a few Myr. We show that the difference in the scatter between the simulated Hα-and FUV-derived SFR-M * relations at z = 2 is consistent with observational constraints. We also find that the Hα/FUV ratios predicted by the simulations at z = 0 are similar to those observed for local galaxies except for a population of low-mass (M * 10 9.5 M ) simulated galaxies with lower Hα/FUV ratios than observed. We suggest that future cosmological simulations should compare the Hα/FUV ratios of their galaxies with observations to constrain the feedback models employed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.