Drug combination discovery depends on reliable synergy metrics but no consensus exists on the correct synergy criterion to characterize combined interactions. The fragmented state of the field confounds analysis, impedes reproducibility, and delays clinical translation of potential combination treatments. Here we present a mass-action based formalism to quantify synergy. With this formalism, we clarify the relationship between the dominant drug synergy principles, and present a mapping of commonly used frameworks onto a unified synergy landscape. From this, we show how biases emerge due to intrinsic assumptions which hinder their broad applicability and impact the interpretation of synergy in discovery efforts. Specifically, we describe how traditional metrics mask consequential synergistic interactions, and contain biases dependent on the Hill-slope and maximal effect of single-drugs. We show how these biases systematically impact synergy classification in large combination screens, potentially misleading discovery efforts. Thus the proposed formalism can provide a consistent, unbiased interpretation of drug synergy, and accelerate the translatability of synergy studies.
An understanding of how cells respond to perturbation is essential for biological applications; however, most approaches for profiling cellular response are limited in scope to pre-established targets. Global analysis of molecular mechanism will advance our understanding of the complex networks constituting cellular perturbation and lead to advancements in areas, such as infectious disease pathogenesis, developmental biology, pathophysiology, pharmacology, and toxicology. We have developed a high-throughput multiomics platform for comprehensive, de novo characterization of cellular mechanisms of action. Platform validation using cisplatin as a test compound demonstrates quantification of over 10 000 unique, significant molecular changes in less than 30 days. These data provide excellent coverage of known cisplatin-induced molecular changes and previously unrecognized insights into cisplatin resistance. This proof-of-principle study demonstrates the value of this platform as a resource to understand complex cellular responses in a high-throughput manner.
BackgroundThere is a lack of biomarkers to predict outcome with targeted therapy in metastatic clear cell renal cancer (mccRCC). This may be because dynamic molecular changes occur with therapy.ObjectiveTo explore if dynamic, targeted-therapy-driven molecular changes correlate with mccRCC outcome.Design, setting, and participantsMultiple frozen samples from primary tumours were taken from sunitinib-naïve (n = 22) and sunitinib-treated mccRCC patients (n = 23) for protein analysis. A cohort (n = 86) of paired, untreated and sunitinib/pazopanib-treated mccRCC samples was used for validation. Array comparative genomic hybridisation (CGH) analysis and RNA interference (RNAi) was used to support the findings.InterventionThree cycles of sunitinib 50 mg (4 wk on, 2 wk off).Outcome measurements and statistical analysisReverse phase protein arrays (training set) and immunofluorescence automated quantitative analysis (validation set) assessed protein expression.Results and limitationsDifferential expression between sunitinib-naïve and treated samples was seen in 30 of 55 proteins (p < 0.05 for each). The proteins B-cell CLL/lymphoma 2 (BCL2), mutL homolog 1 (MLH1), carbonic anhydrase 9 (CA9), and mechanistic target of rapamycin (mTOR) (serine/threonine kinase) had both increased intratumoural variance and significant differential expression with therapy. The validation cohort confirmed increased CA9 expression with therapy. Multivariate analysis showed high CA9 expression after treatment was associated with longer survival (hazard ratio: 0.48; 95% confidence interval, 0.26–0.87; p = 0.02). Array CGH profiles revealed sunitinib was associated with significant CA9 region loss. RNAi CA9 silencing in two cell lines inhibited the antiproliferative effects of sunitinib. Shortcomings of the study include selection of a specific protein for analysis, and the specific time points at which the treated tissue was analysed.ConclusionsCA9 levels increase with targeted therapy in mccRCC. Lower CA9 levels are associated with a poor prognosis and possible resistance, as indicated by the validation cohort.Patient summaryDrug treatment of advanced kidney cancer alters molecular markers of treatment resistance. Measuring carbonic anhydrase 9 levels may be helpful in determining which patients benefit from therapy.
Purpose: The aim of this study was to investigate the effect of VEGF-targeted therapy (sunitinib) on molecular intratumoral heterogeneity (ITH) in metastatic clear cell renal cancer (mccRCC).Experimental Design: Multiple tumor samples (n ¼ 187 samples) were taken from the primary renal tumors of patients with mccRCC who were sunitinib treated (n ¼ 23, SuMR clinical trial) or untreated (n ¼ 23, SCOTRRCC study). ITH of pathologic grade, DNA (aCGH), mRNA (Illumina Beadarray) and candidate proteins (reverse phase protein array) were evaluated using unsupervised and supervised analyses (driver mutations, hypoxia, and stromal-related genes). ITH was analyzed using intratumoral protein variance distributions and distribution of individual patient aCGH and gene-expression clustering.Results: Tumor grade heterogeneity was greater in treated compared with untreated tumors (P ¼ 0.002). In unsupervised analysis, sunitinib therapy was not associated with increased ITH in DNA or mRNA. However, there was an increase in ITH for the driver mutation gene signature (DNA and mRNA) as well as increasing variability of protein expression with treatment (P < 0.05). Despite this variability, significant chromosomal and transcript changes to key targets of sunitinib, such as VHL, PBRM1, and CAIX, occurred in the treated samples.Conclusions: These findings suggest that sunitinib treatment has significant effects on the expression and ITH of key tumor and treatment specific genes/proteins in mccRCC. The results, based on primary tumor analysis, do not support the hypothesis that resistant clones are selected and predominate following targeted therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.