BackgroundDemographic changes, increased life expectancy and the associated rise in chronic diseases pose challenges to public health care systems. Optimized treatment methods and integrated concepts of care are potential solutions to overcome increasing financial burdens and improve quality of care. In this context modeling is a powerful tool to evaluate potential benefits of different treatment procedures on health outcomes as well as health care budgets. This work presents a novel modeling approach for simulating different treatment procedures of heart failure patients based on extensive data sets from outpatient and inpatient care.MethodsOur hybrid heart failure model is based on discrete event and agent based methodologies and facilitates the incorporation of different therapeutic procedures for outpatient and inpatient care on patient individual level. The state of health is modeled with the functional classification of the New York Heart Association (NYHA), strongly affecting discrete state transition probabilities alongside age and gender. Cooperation with Austrian health care and health insurance providers allowed the realization of a detailed model structure based on clinical data of more than 25,000 patients.ResultsSimulation results of conventional care and a telemonitoring program underline the unfavorable prognosis for heart failure and reveal the correlation of NYHA classes with health and economic outcomes. Average expenses for the treatment of NYHA class IV patients of €10,077 ± €165 were more than doubled compared to other classes. The selected use case of a telemonitoring program demonstrated potential cost savings within two years of application. NYHA classes II and III revealed most potential for additional treatment measures.ConclusionThe presented model allows performing extensive simulations of established treatment procedures for heart failure patients and evaluating new holistic methods of care and innovative study designs. This approach offers health care providers a unique, adaptable and comprehensive tool for decision making in the complex and socioeconomically challenging field of cardiovascular diseases.
Metabolic biomarkers may play an important role in the diagnosis, prognostication and assessment of response to pharmacological therapy in complex diseases. The process of discovering new metabolic biomarkers is a non-trivial task which involves a number of bioanalytical processing steps coupled with a computational approach for the search, prioritization and verification of new biomarker candidates. Kinetic analysis provides an additional dimension of complexity in time-series data, allowing for a more precise interpretation of biomarker dynamics in terms of molecular interaction and pathway modulation. A novel network-based computational strategy for the discovery of putative dynamic biomarker candidates is presented, enabling the identification and verification of unexpected metabolic signatures in complex diseases such as myocardial infarction. The novelty of the proposed method lies in combining metabolic time-series data into a superimposed graph representation, highlighting the strength of the underlying kinetic interaction of preselected analytes. Using this approach, we were able to confirm known metabolic signatures and also identify new candidates such as carnosine and glycocholic acid, and pathways that have been previously associated with cardiovascular or related diseases. This computational strategy may serve as a complementary tool for the discovery of dynamic metabolic or proteomic biomarkers in the field of clinical medicine.
BackgroundAs a direct result of the population growing older the total number of chronic illnesses increases. The future expenditure for care of chronically ill patients is an ever-present challenge for the health care system. New solutions based on integrated care or the inclusion of telemedical systems in the treatment procedure can be essential for reducing the future financial burden. Therefore a detailed economic model was developed, which enables the comparison of health and cost outcomes for conventional medical care and different integrated care concepts in heart failure treatment.MethodsF0r modelling, the discrete event technique was used. The model takes outpatient care as well as inpatient care into account to estimate the total occurring costs. It enables the treatment of patients by a physician, a specialist or a clinical ambulance for the simulation of the outpatient care. For inpatient care the model considers the total-costs of the hospitalization and rate of re-admission and furthermore the costs which occur because of special medical treatments or necessary stay at intensive care units. To rate the severity of symptoms patients can be classified using NYHA groups. To outline some of the potential model results, two scenarios have been simulated to compare both methods of care regarding overall costs.ResultsThe developed simulation model allows comparing health and cost outcomes of different integrated care concepts for the treatment of heart failure patients. Additionally to the simulation of standard outpatient and inpatient care procedures in Austria the approach of a telemedical monitoring system for heart failure patients was implemented in this economic model. With the simulated scenarios it could be shown that under the given simulation parameters the telemedical system can lead to cost savings of up to 8% within the first three years.ConclusionsThe developed model represents a comprehensive tool, which opens a wide field of possible simulation scenarios for the treatment of heart failure patients with special focus on overall cost estimations and reimbursement strategies. The simulated scenarios show that telemedical care has the potential of improved health outcomes and economic benefits.
Usability of medical devices is one of the main determining factors in preventing use errors in treatment and strongly correlates to patient safety and quality of treatment. This thesis demonstrates the usability testing and evaluation of a prototype for locomotor therapy of infants. Therefore, based on the normative requirements of the EN 62366, a concept combined of evaluation procedures and assessing methods was created to enable extensive testing and analysis of the different aspects of usability. On the basis of gathered information weak points were identified and appropriate measures were presented to increase the usability and operating safety of the locomotor prototype. The overall outcome showed an usability value of 77.4% and an evaluation score of 6.99, which can be interpreted as “satisfactory”.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.