We propose and experimentally demonstrate a fiber-wireless transmission system for optimized delivery of 60-GHz radio frequency (RF) signals through picocell mobile backhaul connections. We identify advantages of 60-GHz links for utilization in short-range mobile backhaul through feasibility analysis and comparison with an alternative E-band (60-90 GHz) technology. The 60-GHz fiber-wireless-fiber setup is then introduced: two spans of up to 20 km of optical fiber are deployed and bridged by up to 4 m of wireless distance. The 60-GHz radio-over-fiber technology is utilized in the first span of fiber transmission. The system is simplified and tailored for delivery of on-off keying data signals by employing a single module for lightwave generation and modulation combined with a simplified RF downconversion technique by envelope detection. Data signals of 1.25 Gb/s are transmitted, and a bit-error-rate performance below the 7% overhead forward-errorcorrection limit is achieved for a range of potential fiber deployment scenarios. A spurious free dynamic range of 73 dB-Hz 2=3 is attained for a frequency-doubling photonic RF upconversion technique. The power budget margin that is required to extend the wireless transmission distance from 4 m to a few hundred meters has been taken into account in the setup design, and the techniques to extend the wireless distance are analyzed.
Abstract-We present a bidirectional wireless bridge in the W-band enabling the seamless convergence between the wireless and fiber-optic access networks. In the downlink, a 16 Gbit/s QPSK signal is photonically up-converted at the wireless transmitter and electrically down-converted at the wireless receiver. The down-converted signal is re-modulated on to the lightwave and transmit further through the fiber-optic system. In the uplink, both up-and down-conversion are performed by electrical means. Furthermore, we investigate both passive and active wireless transmitters in this work for both downlink and uplink transmissions. With an active wireless transmitter, up to 15 meters wireless transmission is successfully achieved with a BER below the 7% FEC limit in the downlink.
Objective"The next generation of information technology demands both high capacity and mobility for applications such as high speed wireless access capable of supporting broadband services. The transport of wireless and wireline signals is converging into a common telecommunication infrastructure. In this project, we focus on the conception and study of novel architectures for wavelength-division-multiplexing (WDM) optical multi-modulation format radio-over-fiber (RoF) systems, which is a promising solution to implement broadband seamless wireless-wireline access networks. One important feature of our proposed approach is versatile optical multi-modulation format radio-over-fiber systems with robust transmission, high spectral efficiency and high dynamic range properties, not achievable by conventional intensity modulated systems alone. We focus as well on conceiving access nodes designs that support converged wireless and wireline service delivery with energy efficiency and efficient use of a common optical fibre access infrastructure. To the best of our knowledge, no comprehensive theoretical and/or experimental study of the performance of these WDM RoF systems has been reported yet. Moreover, the stringent requirements of future communications links in terms of capacity, flexibility and multi-service support, motivate us to undertake a concise assessment of the ultimate achievable performance of wireline/wireless converged systems. The goal of this project is to theoretically and experimentally investigate the performance of multichannel, multi-modulation formats radio-over-fiber optical links for the transmission of wireless and wireline signals. The timely generated knowledge in this project will contribute to extend the stateof-the-art and to enhance European research excellence and competitiveness in developing solutions for future telecommunication networks."
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.