The binding structures of 11 human oxidosqualene cyclase inhibitors designed as cholesterol-lowering agents were determined for the squalene-hopene cyclase from Alicyclobacillus acidocaldarius, which is the only structurally known homologue of the human enzyme. The complexes were produced by cocrystallization, and the structures were elucidated by X-ray diffraction analyses. All inhibitors were bound in the large active center cavity. The detailed binding structures are presented and discussed in the light of the IC50 values of these 11 as well as 17 other inhibitors. They provide a consistent picture for the inhibition of the bacterial enzyme and can be used to adjust and improve homology models of the human enzyme. The detailed active center structures of the two enzymes are too different to show an IC50 correlation.
Squalene-hopene cyclase (SHC) catalyzes the conversion of squalene into pentacyclic compounds. It is the prokaryotic counterpart of the eukaryotic oxidosqualene cyclase (OSC) that catalyzes the steroid scaffold formation. Because of clear sequence homology, SHC can serve as a model for OSC, which is an attractive target for anticholesteremic drugs. We have established the crystal structure of SHC complexed with Ro48-8071, a potent inhibitor of OSC and therefore of cholesterol biosynthesis. Ro48-8071 is bound in the active-center cavity of SHC and extends into the channel that connects the cavity with the membrane. The binding site of Ro48-8071 is largely identical with the expected site of squalene; it differs from a previous model based on photoaffinity labeling. The knowledge of the inhibitor binding mode in SHC is likely to help develop more potent inhibitors for OSC.
In gray matter pathology of multiple sclerosis, neurodegeneration associates with a high degree of meningeal inflammatory activity. Importantly, ectopic lymphoid follicles (eLFs) were identified at the inflamed meninges of patients with progressive multiple sclerosis. Besides T lymphocytes, they comprise B cells and might elicit germinal center (GC)-like reactions. GC reactions are controlled by FOXP3 + T-follicular regulatory cells (T FR), but it is unknown if they participate in autoantibody production in eLFs. Receiving human post-mortem material, gathered from autopsies of progressive multiple sclerosis patients, indeed, distinct inflammatory infiltrates enriched with B cells could be detected in perivascular areas and deep sulci. CD35 + cells, parafollicular CD138 + plasma cells, and abundant expression of the homing receptor for GCs, CXCR5, on lymphocytes defined some of them as eLFs. However, they resembled GCs only in varying extent, as T cells did not express PD-1, only few cells were positive for the key transcriptional regulator BCL-6 and ongoing proliferation, whereas a substantial number of T cells expressed high NFATc1 like GC-follicular T cells. Then again, predominant cytoplasmic NFATc1 and an enrichment with CD3 + CD27 + memory and CD4 + CD69 + tissue-resident cells implied a chronic state, very much in line with PD-1 and BCL-6 downregulation. Intriguingly, FOXP3 + cells were almost absent in the whole brain sections and CD3 + FOXP3 + T FR s were never found in the lymphoid aggregates. This also points to less controlled humoral immune responses in those lymphoid aggregates possibly enabling the occurrence of CNS-specific autoantibodies in multiple sclerosis patients.
Abstract:The membrane-associated protein squalene-hopene cyclase from Alicyclobacillus acidocaldarius was overexpressed in Escherichia coli and purified by ion exchange and gel permeation chromatography. Crystals of three interrelated forms were grown by vapor diffusion under identical conditions. The crystals diffract to about 2.3 8, resolution, but they are unstable in the X-ray beam.An interpretable heavy-atom derivative was obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.