Community evolution prediction enables businessdriven social networks to detect customer groups modeled as communities based on similar interests by splitting them into temporal segments and utilizing ML classification to predict their structural changes. Unfortunately, existing methods overlook business contexts and focus on analyzing customer activities, raising privacy concerns. This paper proposes a novel method for community evolution prediction that applies a context-aware approach to identify future changes in community structures through three complementary features. Firstly, it models business events as transactions, splits them into explicit contexts, and detects contextualized communities for multiple time windows. Secondly, it uses novel structural metrics representing temporal features of contextualized communities. Thirdly, it uses extracted features to train ML classifiers and predict the community evolution in the same context and other dependent contexts. Experimental results on two real-world data sets reveal that traditional ML classifiers using the context-aware approach can predict community evolution with up to three times higher accuracy, precision, recall, and F1-score than other baseline classification methods (i.e., majority class, persistence).
With the rapidly increasing popularity of social media applications, decentralized control and ownership is taking more attention to preserve user's privacy. However, the lack of central control in the decentralized social network poses new issues of collaborative decision making and trust to this permission-less environment. To tackle these problems and fulfill the requirements of social media services, there is a need for intelligent mechanisms integrated to the decentralized social media that consider trust in various aspects according to the requirement of services. In this paper, we describe an adaptive microservice-based design capable of finding relevant communities and accurate decision making by extracting semantic information and applying role-stage model while preserving anonymity. We apply this information along with exploiting Pareto solutions to estimate the trust in accordance with the quality of service and various conflicting parameters, such as accuracy, timeliness, and latency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.