Stack, chimneylike, and threadlike assemblies have previously been proposed for the structure of disodium cromoglycate (DSCG) aggregates in aqueous solutions. The results of the synchrotron x-ray scattering investigations reported here reveal the formation of simple columnar assemblies with π-π stacking at a separation of 3.4 Å between the DSCG molecules. Lateral separation between the assemblies is concentration and temperature dependent, varying from ∼35 to 42 Å in the orientationally ordered nematic (N) phase and from 27 to 32 Å in the columnar or middle (M) phase having long range lateral positional order. The assemblies' length depends on concentration and consists of ∼23 molecules in the N phase, becoming three to ten times larger in the M phase. The scission energy is concentration dependent in the N phase with values ∼7.19 ± 0.14 k_{B}T (15 wt %), 2.73 ± 0.4 k_{B}T (20 wt %), and 3.05 ± 0.2 k_{B}T (25 wt %). Solutions of all concentrations undergo a spinodal decomposition at temperatures above ∼40 °C, resulting in DSCG-rich regions with the M phase and water-rich regions in the N and isotropic phases.
Optical gas sensors based on chiral-nematic liquid crystals (N* LCs) forming one-dimensional photonic crystals do not require electrical energy and have a considerable potential to supplement established types of sensors. A chiral-nematic phase with tunable selective reflection is induced in a nematic host LC by adding reactive chiral dopants. The selective chemical reaction between dopant and analyte is capable to vary the pitch length (the lattice constant) of the soft, self-assembled, one-dimensional photonic crystal. The progress of the ongoing chemical reaction can be observed even by naked eye because the color of the samples varies. In this work, we encapsulate the responsive N* LC in microscale polyvinylpyrrolidone (PVP) fibers via coaxial electrospinning. The sensor is, thus, given a solid form and has an improved stability against nonavoidable environmental influences. The reaction behavior of encapsulated and nonencapsulated N* LC toward a gaseous analyte is compared, systematically. Making use of the encapsulation is an important step to improve the applicability.
Light-induced modulations of the refractive index and pattern formation are desirable to generate complex photonic structures via exposure to light. Here we show that local modulations of the effective refractive index and reconfigurable defects can be locally induced in a hybridized thin birefringent film of a nematic liquid crystal (LC) on a photoresponsive (generating photoinduced electric fields) iron doped lithium niobate surface via exposure to a focused laser beam. Samples were studied with a tailored imaging approach, which provided the ability to investigate these optically excited, field-induced responses on a microscopic level. Upon exposure with a focused laser beam, the fluent LC was expanded on the substrate's surface and localized field-induced defects were optically created. Both umbilic (central) and line defects were observed. The formation of field-induced umbilic defects was modeled in numerical simulations. In addition, line defects were experimentally studied. It was seen that line defects interconnected the centers of two central defects (field-induced defects, which were present at the upper and lower surfaces of the LC layer). In addition, line disclinations separating reverse tilt domains (caused by the inhomogeneous distribution of the photogenerated fields) were seen. These line disclinations were pinned to the central defects. By exposure with two adjacent focused laser beams two umbilic defects were created side by side and interconnected with a line defect (the line defects pinned to each umbilic defect were joined in a single defect line). An alternative technique is presented to field-induce promising photonic motives (microlenses, resonators, line defects) in a liquid crystalline, hybridized birefringent film on a microscopic scale by using a low-power laser (opposed to the high power necessary to induce optical Kerr responses in a neat LC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.