This review focuses on side-chain functionalized polymers derived from direct (co)polymerization of fluorescent dyes. This overview about polymerizable dyes includes 1,8-naphthalimides, fluoresceins, rhodamines, coumarins, azo-dyes, oxadiazoles, diverse aromatic dyes as well as selected other dyes that cannot be classified within these groups. The discussed dyes have been functionalized with a polymerizable unit in order to apply straight-forward polymerization procedures. Therefore, the center of attention is set to the optical properties of the polymerizable dyes and the applicable polymerization techniques. Furthermore, the various applications (i.e., in biomedicine and pharmacy, as thermo-responsive materials and energy transfer materials, for dispersion of carbon nanotubes and others) of each polymer are discussed.
A spectroscopic characterization of polymers containing rigid π-conjugated oligo(phenyleneethynylene) chromophores as well as oligo(phenyleneethynylene) and methyl methacrylate is presented. The polymers exhibit molar masses of up to 15,000 g mol(-1) and a degree of polymerization between 22 and 80. Emission measurements of the monomeric and polymeric species show that radiative as well as nonradiative rates are influenced by the degree of polymerization due to intramolecular interactions of chromophores pendant to the polymer backbone. Time-resolved emission anisotropy measurements suggest that energy migrates within the polymers. Steady-state emission anisotropy measurements also point to energy migration. Additionally, two oligo(phenyleneethynylene)s with different sizes of the conjugated system are copolymerized in order to enable energy trapping due to energy transfer. The shortened energy-donor fluorescence lifetime within the donor-acceptor copolymers suggest energy transfer. Depending on the degree of polymerization, dispersion of the donor fluorescence lifetime is observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.