The development of biological markers of aging has primarily focused on adult samples. Epigenetic clocks are a promising tool for measuring biological age that show impressive accuracy across most tissues and age ranges. In adults, deviations from the DNA methylation (DNAm) age prediction are correlated with several age-related phenotypes, such as mortality and frailty. In children, however, fewer such associations have been made, possibly because DNAm changes are more dynamic in pediatric populations as compared to adults. To address this gap, we aimed to develop a highly accurate, noninvasive, biological measure of age specific to pediatric samples using buccal epithelial cell DNAm. We gathered 1,721 genome-wide DNAm profiles from 11 different cohorts of typically developing individuals aged 0 to 20 y old. Elastic net penalized regression was used to select 94 CpG sites from a training dataset (n = 1,032), with performance assessed in a separate test dataset (n = 689). DNAm at these 94 CpG sites was highly predictive of age in the test cohort (median absolute error = 0.35 y). The Pediatric-Buccal-Epigenetic (PedBE) clock was characterized in additional cohorts, showcasing the accuracy in longitudinal data, the performance in nonbuccal tissues and adult age ranges, and the association with obstetric outcomes. The PedBE tool for measuring biological age in children might help in understanding the environmental and contextual factors that shape the DNA methylome during child development, and how it, in turn, might relate to child health and disease.
DNA methylation is an epigenetic mark thought to be robust to environmental perturbations on a short time scale. Here, we challenge that view by demonstrating that the infection of human dendritic cells (DCs) with a live pathogenic bacteria is associated with rapid and active demethylation at thousands of loci, independent of cell division. We performed an integrated analysis of data on genome-wide DNA methylation, histone mark patterns, chromatin accessibility, and gene expression, before and after infection. We found that infection-induced demethylation rarely occurs at promoter regions and instead localizes to distal enhancer elements, including those that regulate the activation of key immune transcription factors. Active demethylation is associated with extensive epigenetic remodeling, including the gain of histone activation marks and increased chromatin accessibility, and is strongly predictive of changes in the expression levels of nearby genes. Collectively, our observations show that active, rapid changes in DNA methylation in enhancers play a previously unappreciated role in regulating the transcriptional response to infection, even in nonproliferating cells.
Regulated assembly and disassembly, or turnover, of integrin-mediated cell-extracellular matrix (ECM) adhesions is essential for dynamic cell movements and long-term tissue maintenance. For example, in Drosophila, misregulation of integrin turnover disrupts muscle-tendon attachment at myotendinous junctions (MTJs). We demonstrate that mechanical force, which modulates integrin activity, also regulates integrin and intracellular adhesion complex (IAC) turnover in vivo. Using conditional mutants to alter the tensile force on MTJs, we found that the proportion of IAC components undergoing turnover inversely correlated with the force applied on MTJs. This effect was disrupted by point mutations in β-integrin that interfere with ECM-induced conformational changes and activation of β-integrin or integrin-mediated cytoplasmic signalling. These mutants also disrupted integrin dynamics at MTJs during larval development. Together, these data suggest that specific β-integrin-mediated signals regulate adhesion turnover in response to tension during tissue formation. We propose that integrin-ECM adhesive stability is continuously controlled by force in vivo through integrin-dependent auto-regulatory feedback mechanisms so that tissues can quickly adapt to and withstand mechanical stresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.