The resulting properties of parts fabricated by powder bed fusion additive manufacturing processes are determined by their porosity, local composition, and microstructure. The objective of this work is to examine the influence of the stochastic powder bed on the process window for dense parts by means of numerical simulation. The investigations demonstrate the unique capability of simulating macroscopic domains in the range of millimeters with a mesoscopic approach, which resolves the powder bed and the hydrodynamics of the melt pool. A simulated process window reveals the influence of the stochastic powder layer. The numerical results are verified with an experimental process window for selective electron beam-melted Ti-6Al-4V. Furthermore, the influence of the powder bulk density is investigated numerically. The simulations predict an increase in porosity and surface roughness for samples produced with lower powder bulk densities. Due to its higher probability for unfavorable powder arrangements, the process stability is also decreased. This shrinks the actual parameter range in a process window for producing dense parts.
Selective Electron Beam Melting (SEBM) is a powder bed-based additive manufacturing process for metals. As the electron beam can be moved inertia-free by electromagnetic lenses, the solidification conditions can be deliberately adjusted within the process. This enables control over the local solidification conditions. SEBM typically leads to columnar grain structures. Based on numerical simulation, we demonstrated how technical single crystals develop in IN718 by forcing the temperature gradient along a µ-Helix. The slope of the µ-Helix, i.e., the deviation of the thermal gradient from the build direction, determined the effectiveness of grain selection right up to single crystals. used as the model alloy to fabricate technical single crystals via SEBM. The solidification conditions were subsequently analyzed using numerical simulations of the process.
Powder bed fusion comprises all layer‐by‐layer additive manufacturing technologies of parts built from a powder bed. To exploit the advantages of near‐net shape manufacturing of complex geometries, in contrast to conventional manufacturing techniques, it is essential to understand the underlying physical phenomena occurring during processing for a broad range of different process scenarios. Experimental approaches are costly in time and material and provide only limited access inside the process. However, to understand the process behavior and predict final properties of parts, numerical approaches are powerful tools. This work presents the software suite S𝔸𝕄PLE (Simulation of Additive Manufacturing on the Powder scale using a Laser or Electron beam) which simulates the consolidation and microstructure evolution during beam‐based powder bed fusion processes. It is based on a mesoscopic approach, in which statistical powder beds, melt pool dynamics, evaporation effects, and microstructure evolution are considered and can simulate the build‐up of more than 100 layers. The underlying models and algorithms of the software including a newly applied thermal model are described. Finally, the unique potential of the software is demonstrated by reviewing the influence of various powder bed properties, the effects of evaporation, and the grain structure evolution in the process.
A microstructure has significant influence on the mechanical properties of parts. For isotropic properties, the formation of equiaxed microstructures by the nucleation of new grains during solidification is necessary. For conventional solidification processes, nucleation is well-understood. Regarding powder bed fusion, the repeated remelting of previous layers can cause nucleation under some conditions that are not explainable with classical theories. Here, we investigate this nucleation mechanism with an unprecedented level of detail. In the first step, we built samples with single crystalline microstructures from Ni-base superalloy IN718 by selective electron beam melting. In the second step, single lines with different parameters were molten on top of these samples. We observed a huge number of new grains by nucleation at the melt-pool border of these single lines. However, new grains can only prevail if the alignment of their crystallographic orientation with respect to the local temperature gradient is superior to that of the base material. The current hypothesis is that nucleation at the melt-pool border happens due to remelting microsegregations from former solidification processes leading to constitutional undercooling directly at the onset of solidification. This study offers the opportunity to understand and exploit this mechanism for different manufacturing processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.