A fused donor, thienobenzo [b]indacenodithiophene (TBIDT), was designed and synthesized using a novel acid-promoted cascade ring closure strategy, and copolymerized with a benzothiadiazole (BT) monomer. The backbone of TBIDT is an extension of the well-known indacenodithiophene (IDT) unit and was expected to enhance the charge carrier mobility, by improving backbone planarity and facilitating short-contacts between polymer chains. However, the optimized field-effect transistors demonstrated an average saturation hole mobility of 0.9 cm 2 V −1 s −1 , lower than the performance of IDT-BT (~1.5 cm 2 V −1 s −1 ). Mobilities extracted from time-resolved microwave conductivity (TRMC) measurements were consistent with the trend in hole mobilities in OFET devices. Scanning Tunneling Microscopy (STM) measurements and computational modelling illustrated that TBIDT-BT exhibits a less ordered microstructure in comparison to IDT-BT. This reveals that a regular side chain packing density, independent of conformational isomers, is critical to avoid local free volume due to irregular packing, which can host trapping impurities. DFT calculations indicated that TBIDT-BT, despite containing a larger, planar unit, showed less stabilization of planar backbone geometries, in comparison to IDT-BT. This is due to the reduced electrostatic stabilizing interactions between the peripheral thiophene of the fused core with the BT unit, resulting in a reduction of the barrier to rotation around the single bond. These insights provide a greater understanding of the general structure-property relationships required for semiconducting polymer repeat units to ensure optimal backbone planarization, as illustrated with IDT-type units, guiding the design of novel semiconducting polymers with extended fused backbones for high-performance field-effect transistors.
The development, optimization, and assessment of new methods for the preparation of conjugated materials is key to the continued progress of organic electronics. Direct C–H activation methods have emerged and developed over the last 10 years to become an invaluable synthetic tool for the preparation of conjugated polymers for both redox-active and solid-state applications. Here, we evaluate direct (hetero)arylation polymerization (DHAP) methods for the synthesis of indaceno[1,2-b:5,6-b′]dithiophene-based polymers. We demonstrate, using a range of techniques, including direct visualization of individual polymer chains via high-resolution scanning tunneling microscopy, that DHAP can produce polymers with a high degree of regularity and purity that subsequently perform in organic thin-film transistors comparably to those made by other cross-coupling polymerizations that require increased synthetic complexity. Ultimately, this work results in an improved atom economy by reducing the number of synthetic steps to access high-performance molecular and polymeric materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.