We monitored the effect of different gel aging temperatures (from −20 to 40 °C) and gel aging times (from 7 to 21 days) on the particle size and crystalline structure of template-free Linde type A zeolites through scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. We demonstrate the synthesis of zeolite LTA with average particle sizes of 0.45 ± 0.07 μm by preliminary heat treatment of the precursor gel at −8 °C followed by crystallization at 100 °C. Here, we found that aging the precursor gels for 2 weeks at 40 °C decreases the size of particles by 59% compared with particles formed from unaged gels, and aging gels for 2 weeks at −8 °C results in particles that have a 95% smaller diameter compared with particles formed from the unaged gel. We hypothesize that decreasing the precursor aging temperature below 0 °C leads to the occurrence of spinodal decomposition at which the nucleation barrier vanishes. Consequently, a very large number of nuclei form. Decreasing the gel aging temperature from 40 to 0 °C leads to an increase in the average size of zeolite particles by the Ostwald ripening phenomena (coarsening). Additionally, we found aging the precursor gels for 2 weeks at 40 °C leads to the formation of 27% zeolite X (an undesirable product), while aging at −8 °C for 2 weeks leads to the formation of only 2% zeolite X. The primary purpose of our paper is to explore the two experimentally observed phenomena that occur during low temperature aging of zeolite gel precursors that result in significant effects on particle size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.