Abstract. The Weddell Sea is known to feature large openings in its winter sea ice field, otherwise known as open-ocean polynyas. An area within the Weddell Sea region that has repeatedly featured open-ocean polynyas in the past is that which encompasses the Maud Rise seamount. Within this area, after 40 years of intermittent, smaller openings, a larger, more persistent polynya appeared in early September 2017 and remained open for approximately 80 d until spring ice melt. In this study we present proof that polynya-favorable activity in the Maud Rise area is taking place more frequently and on a larger scale than previously assumed. By investigating thin (< 50 cm) apparent sea ice thickness (ASIT) retrieved from the satellite microwave sensors Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP), we find an anomaly of thin sea ice spanning an area comparable to the polynya of 2017 over Maud Rise which occurred in September 2018. In this paper, we look at sea ice above Maud Rise in August and September of 2017 and 2018 as well as all years from 2010 until 2020 in an 11-year time series. Using fifth-generation ECMWF Reanalysis (ERA5) surface wind reanalysis data, we corroborate previous findings (e.g., Campbell et al., 2019; Francis et al., 2019; Wilson et al., 2019) on the strong impact that storm activity can have on sea ice above Maud Rise and help consolidate the theory that the evolution of the Weddell Sea polynya is controlled by local atmospheric as well as oceanographic variability. Based on the results presented, we propose that the Weddell Sea polynya, rather than being a binary phenomenon with one principal cause, is a dynamic process caused by various different preconditioning factors that must occur simultaneously for it to appear and persist. Moreover, we show that rather than an abrupt stop to anomalous activity above Maud Rise in 2017, the very next year shows signs of polynya-favorable activity that, although insufficient to open the polynya, were present in the region. This phenomenon, as we have shown in the 11-year SMOS record, was not unique to 2018 and was also identified in 2010, 2013 and 2014. It is demonstrated that L-band microwave radiometry from the SMOS and SMAP satellites can provide additional useful information, which helps to better understand dynamic sea ice processes like polynya events when compared to the use of satellite sea ice concentration products alone.
Abstract. The effect that sea ice topography has on the momentum transfer between ice and atmosphere is not fully quantified due to the vast extent of the Arctic and limitations of current measurement techniques. Here we present a method to estimate pan-Arctic momentum transfer via a parameterization which links sea ice–atmosphere form drag coefficients with surface feature height and spacing. We measure these sea ice surface feature parameters using the Cloud and land Elevation Satellite-2 (ICESat-2) which, though it cannot resolve as well airborne surveys, has a higher along-track spatial resolution than other contemporary altimeter satellites. As some narrow obstacles are effectively smoothed out by the ICESat-2 ATL07 spatial resolution, we use near-coincident high-resolution Airborne Topographic Mapper (ATM) elevation data from NASA's Operation IceBridge (OIB) mission to scale up the regional ICESat-2 drag estimates. By also incorporating drag due to open water, floe edges and sea ice skin drag, we produced a time series of average total pan-Arctic neutral atmospheric drag coefficient estimates from October 2018 to May 2022. Here we have observed its temporal evolution to be unique and not directly tied to sea ice extent. By also mapping 3-month aggregates for the years 2019, 2020 and 2021 for better regional analysis, we found the thick multiyear ice area directly north of the Canadian Archipelago and Greenland to be consistently above 2.0 · 10−3 with rough ice ∼ 1.5 · 10−3 typically filling the full multiyear ice portion of the Arctic each spring.
Abstract. The Weddell Sea Polynya is an anomalous large opening in the Antarctic sea ice above the Maud Rise seamount. After 40 years of absence, it fully opened again on 13 September, 2017, and lasted until melt; staying open for a total of 80 days. 2017, however, actually was not the only year the imprint of the polynya could be identified. By investigating sea ice thickness (SIT) data retrieved from the satellite microwave sensors Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP), we have isolated an anomaly of thin sea ice spanning an area comparable to the polynya of 2017 over Maud Rise occurring in September 2018. In this paper, we look at sea ice above Maud Rise in August and September of 2017 and 2018 as well as all years from 2010 until 2020 in a 11-year time series. Using the ERA5 surface wind reanalysis data, we present the strong impact storm activity has on sea ice and help consolidate the theory that the Weddell Sea Polynya, in addition to oceanographic effects, is subject to direct atmospheric forcing. Based on the results presented we propose that the Weddell Sea Polynya, rather than being a binary system with one principal cause, is a dynamic process caused by various different preconditioning factors that must occur simultaneously for it to occur. Moreover, we show that rather than an abrupt stop to anomalous activity atop Maud Rise in 2017, the very next year shows signs of polynya-favourable activity that, although insufficient, was present in the region. This effect, as will be shown in the 11-year SMOS record, is not unique to 2018 and similar anomalies are identified in 2010, 2013 and 2014. It is demonstrated that L-band microwave radiometry from the SMOS and SMAP satellites can provide additional useful information, which helps to better understand dynamic sea ice processes like polynya events, in comparison to if satellite sea ice concentration products would be used alone.
No abstract
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.