Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing the coronavirus disease 2019 (COVID-19) pandemic, has infected millions of people and caused hundreds of thousands of deaths. While COVID-19 has overwhelmed healthcare resources (e.g., healthcare personnel, testing resources, hospital beds, and ventilators) in a number of countries, limited research has been conducted to understand spatial accessibility of such resources. This study fills this gap by rapidly measuring the spatial accessibility of COVID-19 healthcare resources with a particular focus on Illinois, USA. Method The rapid measurement is achieved by resolving computational intensity of an enhanced two-step floating catchment area (E2SFCA) method through a parallel computing strategy based on cyberGIS (cyber geographic information science and systems). The E2SFCA has two major steps. First, it calculates a bed-to-population ratio for each hospital location. Second, it sums these ratios for residential locations where hospital locations overlap. Results The comparison of the spatial accessibility measures for COVID-19 patients to those of population at risk identifies which geographic areas need additional healthcare resources to improve access. The results also help delineate the areas that may face a COVID-19-induced shortage of healthcare resources. The Chicagoland, particularly the southern Chicago, shows an additional need for resources. This study also identified vulnerable population residing in the areas with low spatial accessibility in Chicago. Conclusion Rapidly measuring spatial accessibility of healthcare resources provides an improved understanding of how well the healthcare infrastructure is equipped to save people’s lives during the COVID-19 pandemic. The findings are relevant for policymakers and public health practitioners to allocate existing healthcare resources or distribute new resources for maximum access to health services.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing the coronavirus disease 2019 (COVID-19) pandemic, has infected millions of people and caused hundreds of thousands of deaths. While COVID-19 has overwhelmed healthcare resources (e.g., healthcare personnel, testing resources, hospital beds, and ventilators) in a number of countries, limited research has been conducted to understand spatial accessibility of such resources. This study fills this gap by rapidly measuring the spatial accessibility of COVID-19 healthcare resources with a particular focus on Illinois, USA. Specifically, the rapid measurement is achieved by resolving computational intensity of an enhanced two-step floating catchment area (E2SFCA) method through a parallel computing strategy based on cyberGIS (cyber geographic information science and systems). The study compared the spatial accessibility measures for COVID-19 patients to those of general population, identifying which geographic areas need additional healthcare resources to improve access. The results also help delineate the areas that may face a COVID-19-induced shortage of healthcare resources caused by COVID-19. The Chicagoland, particularly the southern Chicago, shows an additional need for resources. Our findings are relevant for policymakers and public health practitioners to allocate existing healthcare resources or distribute new resources for maximum access to health services.. CC-BY 4.0 International license It is made available under a is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)
Calibration of agent‐based models (ABMs) is a major challenge due to the complex nature of the systems being modeled, the heterogeneous nature of geographical regions, the varying effects of model inputs on the outputs, and computational intensity. Nevertheless, ABMs need to be carefully tuned to achieve the desirable goal of simulating spatiotemporal phenomena of interest, and a well‐calibrated model is expected to achieve an improved understanding of the phenomena. To address some of the above challenges, this article proposes an integrated framework of global sensitivity analysis (GSA) and calibration, called GSA‐CAL. Specifically, variance‐based GSA is applied to identify input parameters with less influence on differences between simulated outputs and observations. By dropping these less influential input parameters in the calibration process, this research reduces the computational intensity of calibration. Since GSA requires many simulation runs, due to ABMs' stochasticity, we leverage the high‐performance computing power provided by the advanced cyberinfrastructure. A spatially explicit ABM of influenza transmission is used as the case study to demonstrate the utility of the framework. Leveraging GSA, we were able to exclude less influential parameters in the model calibration process and demonstrate the importance of revising local settings for an epidemic pattern in an outbreak.
Accomplishing the goals outlined in “Ending the HIV (Human Immunodeficiency Virus) Epidemic: A Plan for America Initiative” will require properly estimating and increasing access to HIV testing, treatment, and prevention services. In this research, a computational spatial method for estimating access was applied to measure distance to services from all points of a city or state while considering the size of the population in need for services as well as both driving and public transportation. Specifically, this study employed the enhanced two-step floating catchment area (E2SFCA) method to measure spatial accessibility to HIV testing, treatment (i.e., Ryan White HIV/AIDS program), and prevention (i.e., Pre-Exposure Prophylaxis [PrEP]) services. The method considered the spatial location of MSM (Men Who have Sex with Men), PLWH (People Living with HIV), and the general adult population 15–64 depending on what HIV services the U.S. Centers for Disease Control (CDC) recommends for each group. The study delineated service- and population-specific accessibility maps, demonstrating the method’s utility by analyzing data corresponding to the city of Chicago and the state of Illinois. Findings indicated health disparities in the south and the northwest of Chicago and particular areas in Illinois, as well as unique health disparities for public transportation compared to driving. The methodology details and computer code are shared for use in research and public policy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.