Nowadays, venom-based drug discovery becomes popular again: pharmaceutical companies evaluate animal venom potential as a combinatory library of biologically-active compounds. Collaborations with research groups from academia are intensified, new toxins are being investigated, among which polypeptides are of paramount importance. Sea anemones produce the most diversified, from structural point of view, polypep- tide venom components among other animals. This particular review considers known polypeptide toxins from sea anemones, basically taking into account its classification by primary structural features. The most important functional characteristics are analyzed in each structural class.
Novel disulfide-containing polypeptide toxin was discovered in the venom of the Tibellus oblongus spider. We report on isolation, spatial structure determination and electrophysiological characterization of this 41-residue toxin, called ω-Tbo-IT1. It has an insect-toxic effect with LD50 19 μg/g in experiments on house fly Musca domestica larvae and with LD50 20 μg/g on juvenile Gromphadorhina portentosa cockroaches. Electrophysiological experiments revealed a reversible inhibition of evoked excitatory postsynaptic currents in blow fly Calliphora vicina neuromuscular junctions, while parameters of spontaneous ones were not affected. The inhibition was concentration dependent, with IC50 value 40 ± 10 nM and Hill coefficient 3.4 ± 0.3. The toxin did not affect frog neuromuscular junctions or glutamatergic and GABAergic transmission in rat brains. Ca2+ currents in Calliphora vicina muscle were not inhibited, whereas in Periplaneta americana cockroach neurons at least one type of voltage gated Ca2+ current was inhibited by ω-Tbo-IT1. Thus, the toxin apparently acts as an inhibitor of presynaptic insect Ca2+ channels. Spatial structure analysis of the recombinant ω-Tbo-IT1 by NMR spectroscopy in aqueous solution revealed that the toxin comprises the conventional ICK fold containing an extended β-hairpin loop and short β-hairpin loop which are capable of making “scissors-like mutual motions”.
Sea anemones (Actiniaria) are intensely popular objects of study in venomics. Order Actiniaria includes more than 1,000 species, thus presenting almost unlimited opportunities for the discovery of novel biologically active molecules. The venoms of cold-water sea anemones are studied far less than the venoms of tropical sea anemones. In this work, we analysed the molecular venom composition of the cold-water sea anemone Cnidopus japonicus. Two sets of NGS data from two species revealed molecules belonging to a variety of structural classes, including neurotoxins, toxin-like molecules, linear polypeptides (Cys-free), enzymes, and cytolytics. High-throughput proteomic analyses identified 27 compounds that were present in the venoms. Some of the toxin-like polypeptides exhibited novel Cys frameworks. To characterise their function in the venom, we heterologously expressed 3 polypeptides with unusual Cys frameworks (designated CjTL7, CjTL8, and AnmTx Cj 1c-1) in E. coli. Toxicity tests revealed that the CjTL8 polypeptide displays strong crustacean-specific toxicity, while AnmTx Cj 1c-1 is toxic to both crustaceans and insects. Thus, an improved NGS data analysis algorithm assisted in the identification of toxins with unusual Cys frameworks showing no homology according to BLAST. Our study shows the advantage of combining omics analysis with functional tests for active polypeptide discovery.
Herein, we describe a modified form of the antimicrobial hairpin-like peptide EcAMP1, isolated from barnyard grass (E. crusgalli) seeds, which is structurally characterized by a combination of high-pressure liquid chromatography, mass spectrometry, and automated Edman sequencing. This derivate has a single amino acid substitution (Pro19Hyp) in the second α-helical region of the molecule, which is critical for the formation of the hydrophobic core and the secondary structure elements. Comparing the antifungal activity of these two peptides, we found that the modified EcAMP1-Hyp had a significantly weaker activity towards the most-sensitive plant pathogenic fungus Fusarium solani. Molecular dynamics simulations and in vitro binding to the commercial polysaccharides allowed us to conclude that the Pro-19 residue is important for binding to carbohydrates located in the spore cell wall and it chiefly exhibits a fungistatic action representing the hyphal growth inhibition. These data are novel and significant for understanding a role of α-hairpinins in plant immunity.
Blue biotechnologies implement marine bio-resources for addressing practical concerns. The isolation of biologically active molecules from marine animals is one of the main ways this field develops. Strikingly, cnidaria are considered as sustainable resources for this purpose, as they possess unique cells for attack and protection, producing an articulated cocktail of bioactive substances. The Mediterranean sea anemone Anemonia viridis has been studied extensively for years. In this short review, we summarize advances in bioprospecting of the A. viridis toxin arsenal. A. viridis RNA datasets and toxin data mining approaches are briefly described. Analysis reveals the major pool of neurotoxins of A. viridis, which are particularly active on sodium and potassium channels. This review therefore integrates progress in both RNA-Seq based and biochemical-based bioprospecting of A. viridis toxins for biotechnological exploitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.