Human partners are very effective at coordinating in space and time. Such ability is particular remarkable considering that visual perception of space is a complex inferential process, which is affected by individual prior experience (e.g. the history of previous stimuli). As a result, two partners might perceive differently the same stimulus. Yet, they find a way to align their perception, as demonstrated by the high degree of coordination observed in sports or even in everyday gestures as shaking hands. Robots would need a similar ability to align with their partner's perception. However, to date there is no knowledge of how the inferential mechanism supporting visual perception operates during social interaction. In the current work, we use a humanoid robot to address this question. We replicate a standard protocol for the quantification of perceptual inference in a HRI setting. Participants estimated the length of a set of segments presented by the humanoid robot iCub. The robot behaved in one condition as a mechanical arm driven by a computer and in another condition as an interactive, social partner. Even if the stimuli presented were the same in the two conditions, length perception was different when the robot was judged as an interactive agent rather than a mechanical tool. When playing with the social robot, participants relied significantly less on stimulus history. This result suggests that the brain changes optimization strategies during interaction and lay the foundations to design humanaware robot visual perception.
CCS CONCEPTS• Human-centered computing~Interaction design • Humancentered computing~Collaborative and social computing devices
Deception is a complex social skill present in human interactions. Many social professions such as teachers, therapists and law enforcement officers leverage on deception detection techniques to support their work activities. Robots with the ability to autonomously detect deception could provide an important aid to human-human and human-robot interactions. The objective of this work is to demonstrate the possibility to develop a lie detection system that could be implemented on robots. To this goal, we focus on human and human robot interaction to understand if there is a difference in the behavior of the participants when lying to a robot or to a human. Participants were shown short movies of robberies and then interrogated by a human and by a humanoid robot “detectives.” According to the instructions, subjects provided veridical responses to half of the question and false replies to the other half. Behavioral variables such as eye movements, time to respond and eloquence were measured during the task, while personality traits were assessed before experiment initiation. Participant's behavior showed strong similarities during the interaction with the human and the humanoid. Moreover, the behavioral features were used to train and test a lie detection algorithm. The results show that the selected behavioral variables are valid markers of deception both in human-human and in human-robot interactions and could be exploited to effectively enable robots to detect lies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.