Objective: To create an International Spinal Cord Injury (SCI) Cardiovascular Function Basic Data Set within the framework of the International SCI Data Sets. Setting: An international working group. Methods: The draft of the data set was developed by a working group comprising members appointed by the American Spinal Injury Association (ASIA), the International Spinal Cord Society (ISCoS) and a representative of the executive committee of the International SCI Standards and Data Sets. The final version of the data set was developed after review by members of the executive committee of the International SCI Standards and Data Sets, the ISCoS scientific committee, ASIA board, relevant and interested international organizations and societies, individual persons with specific interest and the ISCoS Council. To make the data set uniform, each variable and each response category within each variable have been specifically defined in a way that is designed to promote the collection and reporting of comparable minimal data. Results: The variables included in the International SCI Cardiovascular Function Basic Data Set include the following items: date of data collection, cardiovascular history before the spinal cord lesion, events related to cardiovascular function after the spinal cord lesion, cardiovascular function after the spinal cord lesion, medications affecting cardiovascular function on the day of examination; and objective measures of cardiovascular functions, including time of examination, position of examination, pulse and blood pressure. The complete instructions for data collection and the data sheet itself are freely available on the websites of both ISCoS
Duchenne muscular dystrophy (DMD) is an X-linked progressive muscle disorder resulting in muscle weakness and cardiomyopathy. MicroRNAs have been shown to play essential roles in muscle development, metabolism, and disease pathologies. We demonstrated that miR-486 expression is reduced in DMD muscles and its expression levels correlate with dystrophic disease severity. MicroRNA-486 knockout mice developed disrupted myofiber architecture, decreased myofiber size, decreased locomotor activity, increased cardiac fibrosis, and metabolic defects that were exacerbated on the dystrophic mdx5cv background. We integrated RNA-sequencing and chimeric eCLIP-sequencing data to identify direct in vivo targets of miR-486 and associated dysregulated gene signatures in skeletal muscle. In comparison to our DMD mouse muscle transcriptomes, we identified several of these miR-486 muscle targets including known modulators of dystrophinopathy disease symptoms. Together, our studies identify miR-486 as a driver of muscle remodeling in DMD, a useful biomarker for dystrophic disease progression, and highlight chimeric eCLIP-sequencing as a useful tool to identify direct in vivo microRNA target transcripts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.