A facile method for preparing highly self‐doped Cu2‐xE (E = S, Se) nanocrystals (NCs) with controlled size in the range of 2.8–13.5 nm and 7.2–16.5 nm, for Cu2‐xS and Cu2‐xSe, respectively, is demonstrated. Strong near‐infrared localized surface plasmon resonance absorption is observed in the NCs, indicating that the as‐prepared particles are heavily p‐doped. The NIR plasmonic absorption is tuned by varying the amount of oleic acid used in synthesis. This effect is attributed to a reduction in the number of free carriers through surface interaction of the deprotonated carboxyl functional group of oleic acid with the NCs. This approach provides a new pathway to control both the size and the cationic deficiency of Cu2‐xSe and Cu2‐xS NCs. The high electrical conductivity exhibited by these NPs in metal‐semiconductor‐metal thin film devices shows promise for applications in printable field‐effect transistors and microelectronic devices.
A facile approach to make an efficient hybrid bulk heterojunction photovoltaic device with lead sulfide nanocrystals and a low‐bandgap polymer is demonstarted, resulting in a power conversion efficiency of about 2–3%.
Photoconductivity is observed in ZnO epilayers due to photoexcitation in the visible spectral region of 400-700 nm, below the ZnO bandgap energy of 3.4 eV. Photoconductive transients due to visible photoexcitation have time constants in the order of minutes. Treatment of the ZnO surface with SiO 2 passivation layers results in a significant reduction in the photoconductive signal and photoconductive time constant. The photoconductive response is attributed to hole traps in ZnO, where a rate equation model is presented to describe the photoconductive characteristics. A method of extracting the hole trap density spectrum is presented on the basis of the rate equation model and assumptions for hole capture lifetime and carrier recombination lifetime that are validated by experimental time-resolved photoluminescence measurements of the material under study. Traps are found to be distributed near 0.75 eV and 0.9 eV from the valence band edge for SiO 2 passivated and unpassivated ZnO epilayers, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.