Anaerobic digestion of animal manure is a potential bioenergy resource that avoids greenhouse gas emissions. However, the conventional approach is to use continuously stirred tank reactors (CSTRs) with hydraulic retention times (HRTs) of greater than 30 d. Reactors with biomass retention were investigated in this study in order to increase the efficiency of the digestion process. Filtered pig slurry was used as a substrate in an expanded granular sludge bed (EGSB) reactor and fixed-bed (FB) reactor. The highest degradation efficiency (ηCOD) and methane yield (MY) relative to the chemical oxygen demand (COD) were observed at the minimum loading rates, with MY = 262 L/kgCOD and ηCOD = 73% for the FB reactor and MY = 292 L/kgCOD and ηCOD = 76% for the EGSB reactor. The highest daily methane production rate (MPR) was observed at the maximum loading rate, with MPR = 3.00 m3/m3/d at HRT = 2 d for the FB reactor and MPR = 2.16 m3/m3/d at HRT = 3 d for the EGSB reactor. For both reactors, a reduction in HRT was possible compared to conventionally driven CSTRs, with the EGSB reactor offering a higher methane yield and production rate at a shorter HRT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.