Resistive voltage dividers tend to have a highly non-linear transfer function as parasitic and stray capacitances exert an increasing influence with increasing frequency. The non-linear transfer function depends on the topology and resistors used and consists of a low-pass filter with an additional high-pass component in the GHz range. Due to the non-linear transfer function the measured signal differs from the original input signal. Here, we present an improved resistive voltage divider with additional compensation capacities to extend the linear bandwidth. With this new concept, the linear bandwidth is improved from 115 kHz to 88 MHz, while maintaining a DC input impedance of 10 MΩ. For high-voltage insulation and easy manufacturing, surface mounted resistors on a printed circuit board with a compensation electrode on the adjacent side are used. The performance of this resistive voltage divider is demonstrated by measuring a series of high-voltage pulses with an amplitude of 2.5 kVpeak-peak. The measured pulse rise time is about 16 ns, corresponding to an average slew-rate of 150 V/ns. Finally, the developed resistive voltage divider is successfully used to measure fast high-voltage transients required for advanced ion mobility spectrometers with integrated collision induced fragmentation.
For various applications, such as gate drivers for transistors, wireless chargers for mobile devices and cars, and isolated measurement equipment, an isolated DC power supply for electronic components is required. In this work, a new concept for an isolated power supply with insulation strength of 50 kV and power transmission of up to 60 W to supply measurement equipment with 12 or 24 V is presented. Furthermore, high overall efficiency of 82.5% at 55 W is achieved. Feasibility is demonstrated in a real application powering data acquisition electronics at high reference potential. Our new concept uses a coreless printed circuit board (PCB) transformer (15 cm × 10 cm × 4 cm and a weight of 480 g) designed for maximum efficiency via a coil layout and close proximity of adjacent coils on one PCB while reaching high isolation strength via the PCB material and potted coils. To increase efficiency, we investigated different coil geometries at different frequencies. A low-cost design consisting of two Qi charging coils mounted on one PCB is compared with our integrated PCB transformers manufactured from a four-layer PCB with ferrites applied on the outside. With this new design, high isolation voltages are possible while reaching high transformer efficiency of up to 90%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.