State-of-the-art approaches for localization and mapping are based on local features in images. Along with these features, modern augmented and mixed-reality devices enable building a mesh of the surrounding space. Using this mesh map, we can solve the problem of cross-device localization. This approach is independent of the type of feature descriptors and SLAM used onboard the AR/MR device. The mesh could be reduced to the point cloud that only takes vertices. We analyzed and compared different point cloud registration methods applicable to the problem. In addition, we proposed a new pipeline Feature Inliers Graph Registration Approach (FIGRA) for the co-localization of AR/MR devices using point clouds. The comparative analysis of Go-ICP, Bayesian-ICP, FGR, Teaser++, and FIGRA shows that feature-based methods are more robust and faster than ICP-based methods. Through an in-depth comparison of the feature-based methods with the usual fast point feature histogram and the new weighted height image descriptor, we found that FIGRA has a better performance due to its effective graph-theoretic base. The proposed pipeline allows one to match point clouds in complex real scenarios with low overlap and sparse point density.
Современные подходы локализации и построения карты для устройств дополненной (AR) и смешанной (MR) реальности основаны на извлечении локальных признаков с камеры. Наряду с этим современные устройства AR/MR позволяют строить трехмерную сетку окружающего пространства. Однако существующие методы не решают задачу глобальной совместной локализации устройства из-за применения разных дескрипторов для вычисления признаков с изображений. Используя карту пространства из трехмерной сетки, мы можем решить проблему совместной глобальной локализации устройств AR/MR. Этот подход не зависит от типа дескрипторов функций и алгоритмов локализации и картографирования, используемых на борту устройства AR/MR. Сетку можно свести к облаку точек, которое состоит только из вершин сетки. Мы предлагаем подход для совместной локализации устройств AR/MR с использованием облаков точек, которые не зависят от алгоритмов на борту устройства. Мы проанализировали различные алгоритмы регистрации облаков точек и обсудили их ограничения для задачи совместной глобальной локализации устройств AR/MR в помещении.Ключевые слова: совместная локализация, дополненная и смешанная реальность, регистрация облаков точек
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.