Purpose: The toxicity and antitumor activity of regional intrathecal delivery of an oncolytic recombinant poliovirus, PVS-RIPO, was evaluated in rodent models of glioblastoma multiforme neoplastic meningitis. Experimental Design: To evaluate for toxicity, PVS-RIPO was administered into the spinal cord of transgenic mice that express the human poliovirus receptor, CD155, and into the intrathecal space of athymic rats without tumor. To evaluate efficacy, two different doses of PVS-RIPO were administered intrathecally 3 days after athymic rats were inoculated intrathecally with an aggressive human glioblastoma multiforme xenograft. Results: No clinical or histologic evidence of toxicity was found. In efficacy studies, median survival was increased by 174.47% from 8.5 days in the group treated with UV light-inactivated virus to 15 days in the rats treated with 1.0 Â 10 7 plaque-forming units (pfu) of PVS-RIPO (P < 0.0001).A similar increase in median survival was seen in the group receiving 1.0 Â 10 9 pfu PVS-RIPO (P < 0.0001); however, there was no statistically significant dose-response relationship (P = 0.345). In addition, 1 of 10 rats in lower-dose PVS-RIPO^treated group and 3 of 10 rats in higher-dose PVS-RIPO^treated group survived >60 days after tumor cell inoculation and had no evidence of residual tumor at autopsy. Conclusion: These results suggest that intrathecal treatment with PVS-RIPO may be useful for treatment of neoplastic meningitis in patients with glioblastoma multiforme and provides a rationale for clinical trials in this area.
1,25-Dihydroxyvitamin D3 (DHVD3) coadministered with monovalent inactivated poliovirus vaccine (IPV) of all 3 serotypes significantly enhances antipoliovirus systemic and mucosal immunity in mice. Although serum immunoglobulin G antibodies are significantly higher in serotypes 2 and 3, and although salivary immunoglobulin A is significantly increased in serotypes 1 and 3, DHVD3 had the most dramatic effect on the level of neutralizing serum antibodies of all 3 IPV serotypes. These findings suggest a possible use of vitamin D3 as an adjuvant for currently used and proposed new Sabin IPVs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.