Presently, breast cancer diagnostic methods are dominated by mammography. Although drawbacks of mammography are present including ionizing radiation and patient discomfort, not many alternatives are available. Ultrasound (US) is another method used in the diagnosis of breast cancer, commonly performed on women with dense breasts or in differentiating cysts from solid tumors. Handheld ultrasound (HHUS) and automated breast ultrasound (ABUS) are presently used to generate reflection images which do not contain quantitative information about the tissue. This limitation leads to a subjective interpretation from the sonographer. To rectify the subjective nature of ultrasound, ultrasound tomography (UST) systems have been developed to acquire both reflection and transmission UST (TUST) images. This allows for quantitative assessment of tissue sound speed (SS) and acoustic attenuation which can be used to evaluate the stiffness of the lesions. Another imaging modality being used to detect breast cancer is photoacoustic tomography (PAT). Utilizing much of the same hardware as ultrasound tomography, PAT receives acoustic waves generated from tissue chromophores that are optically excited by a high energy pulsed laser. This allows the user to ideally produce chromophore concentration maps or extract other tissue parameters through spectroscopic PAT. Here, several systems in the area of TUST and PAT are discussed along with their advantages and disadvantages in breast cancer diagnosis. This overview of available systems can provide a landscape of possible intersections and future refinements in cancer diagnosis.
Photoacoustic (PA) imaging is a methodology that uses the absorption of short laser pulses by endogenous or exogenous chromophores within human tissue, and the subsequent generation of acoustic waves acquired by an ultrasound (US) transducer, to form an image that can provide functional and molecular information. Amongst the various types of PA imaging, PA tomography (PAT) has been proposed for imaging pathologies such as breast cancer. However, the main challenge for PAT imaging is the deliverance of sufficient light energy horizontally through an imaging cross-section as well as vertically. In this study, three different illumination methods are compared for a full-ring ultrasound (US) PAT system. The three distinct illumination setups are full-ring, diffused-beam, and point source illumination. The full-ring system utilizes a cone mirror and parabolic reflector to create the ringed-shaped beam for PAT, while the diffuse scheme uses a light diffuser to expand the beam, which illuminates tissue-mimicking phantoms. The results indicate that the full-ring illumination is capable of providing a more uniform fluence irrespective of the vertical depth of the imaged cross-section, while the point source and diffused illumination methods provide a higher fluence at regions closer to the point of entry, which diminishes with depth. In addition, a set of experiments was conducted to determine the optimum position of ring-illumination with respect to the position of the acoustic detectors to achieve the highest signal-to-noise ratio.
Background As of 2022, breast cancer continues to be the most diagnosed cancer worldwide. This problem persists within the United States as well, as the American Cancer Society has reported that ∼12.5% of women will be diagnosed with invasive breast cancer over the course of their lifetime. Therefore, a clinical need continues to exist to address this disease from a treatment and therapeutic perspective. Current treatments for breast cancer and cancers more broadly include surgery, radiation, and chemotherapy. Adjuncts to these methods have been developed to improve the clinical outcomes for patients. One such adjunctive treatment is mild hyperthermia therapy (MHTh), which has been shown to be successful in the treatment of cancers by increasing effectiveness and reduced dosage requirements for radiation and chemotherapies. MHTh‐assisted treatments can be performed with invasive thermal devices, noninvasive microwave induction, heating and recirculation of extracted patient blood, or whole‐body hyperthermia with hot blankets. Purpose One common method for inducing MHTh is by using microwave for heat induction and magnetic resonance imaging for temperature monitoring. However, this leads to a complex, expensive, and inaccessible therapy platform. Therefore, in this work we aim to show the feasibility of a novel all‐acoustic MHTh system that uses focused ultrasound (US) to induce heating while also using US tomography (UST) to provide temperature estimates. Changes in sound speed (SS) have been shown to be strongly correlated with temperature changes and can therefore be used to indirectly monitor heating throughout the therapy. Additionally, these SS estimates allow for heterogeneous SS‐corrected phase delays when heating complex and heterogeneous tissue structures. Methods Feasibility to induce localized heat in tissue was investigated in silico with a simulated breast model, including an embedded tumor using continuous wave US. Here, both heterogenous acoustic and thermal properties were modeled in addition to blood perfusion. We further demonstrate, with ex vivo tissue phantoms, the feasibility of using ring‐based UST to monitor temperature by tracking changes in SS. Two phantoms (lamb tissue and human abdominal fat) with latex tubes containing varied temperature flowing water were imaged. The measured SS of the water at each temperature were compared against values that are reported in literature. Results Results from ex vivo tissue studies indicate successful tracking of temperature under various phantom configurations and ranges of water temperature. The results of in silico studies show that the proposed system can heat an acoustically and thermally heterogenous breast model to the clinically relevant temperature of 42°C while accounting for a reasonable time needed to image the current cross section (200 ms). Further, we have performed an initial in silico study demonstrating the feasibility of adjusting the transmit waveform frequency to modify the effective heating height at the focused region. ...
Given that breast cancer is the second leading cause of cancer-related deaths among women in the United States, it is necessary to continue improving the sensitivity and specificity of breast imaging systems that diagnose breast lesions. Photoacoustic (PA) imaging can provide functional information during in vivo studies and can augment the structural information provided by ultrasound (US) imaging. A full-ring, all-reflective, illumination system for photoacoustic tomography (PAT) coupled to a full-ring US receiver is developed and tested. The US/PA tomography system utilizes a cone mirror and conical reflectors to optimize light delivery for PAT imaging and has the potential to image objects that are placed within the ring US transducer. The conical reflector used in this system distributes the laser energy over a circular cross-sectional area, thereby reducing the overall fluence. This, in turn, allows the operator to increase the laser energy achieving better cross-sectional penetration depth. A proof-of-concept design utilizing a single cone mirror and a parabolic reflector is used for imaging cylindrical phantoms with light-absorbing objects. For the given phantoms, it has been shown that there was no restriction in imaging a given targeted cross-sectional area irrespective of vertical depth, demonstrating the potential of mirror-based, ring-illuminated PAT system. In addition, the all-reflective ring illumination method shows a uniform PA signal across the scanned cross-sectional area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.