Nucleic acid-based materials enable sub-nanometer precision in self-assembly for fields including biophysics, diagnostics, therapeutics, photonics, and nanofabrication. However, structural DNA nanotechnology has been limited to substantially hydrated media. Transfer to organic solvents commonly used in polymer and peptide synthesis results in the alteration of DNA helical structure or reduced thermal stabilities. Here we demonstrate that gammamodified peptide nucleic acids (γPNA) can be used to enable formation of complex, selfassembling nanostructures in select polar aprotic organic solvent mixtures. However, unlike the diameter-monodisperse populations of nanofibers formed using analogous DNA approaches, γPNA structures appear to form bundles of nanofibers. A tight distribution of the nanofiber diameters could, however, be achieved in the presence of the surfactant SDS during self-assembly. We further demonstrate nanostructure morphology can be tuned by means of solvent solution and by strand substitution with DNA and unmodified PNA. This work thereby introduces a science of γPNA nanotechnology.
The flow of charge through molecules is central to the function of supramolecular machines, and charge transport in nucleic acids is implicated in molecular signaling and DNA repair. We examine the transport of electrons through nucleic acids to understand the interplay of resonant and nonresonant charge carrier transport mechanisms. This study reports STM break junction measurements of peptide nucleic acids (PNAs) with a G-block structure and contrasts the findings with previous results for DNA duplexes. The conductance of G-block PNA duplexes is much higher than that of the corresponding DNA duplexes of the same sequence; however, they do not display the strong even–odd dependence conductance oscillations found in G-block DNA. Theoretical analysis finds that the conductance oscillation magnitude in PNA is suppressed because of the increased level of electronic coupling interaction between G-blocks in PNA and the stronger PNA–electrode interaction compared to that in DNA duplexes. The strong interactions in the G-block PNA duplexes produce molecular conductances as high as 3% G 0, where G 0 is the quantum of conductance, for 5 nm duplexes.
Growing interest in i-motif DNA as a transcriptional regulatory element motivates development of synthetic molecules capable of targeting these structures. In this study, we designed unmodified peptide nucleic acid (PNA) and gamma-modified PNA (γPNA) oligomers complementary to an i-motif forming sequence derived from the promoter of the KRAS oncogene. Biophysical techniques such as circular dichroism (CD) spectroscopy, CD melting, and fluorescence spectroscopy demonstrated the successful invasion of the i-motif by PNA and γPNA. Both PNA and γPNA showed very strong binding to the target sequence with high thermal stability of the resulting heteroduplexes. Interestingly fluorescence and CD experiments indicated formation of an intermolecular i-motif structure via the overhangs of target-probe heteroduplexes formed by PNA/γPNA invasion of the intramolecular i-motif. Targeting promoter i-motif forming sequences with high-affinity oligonucleotide mimics like γPNAs may represent a new approach for inhibiting KRAS transcription, thereby representing a potentially useful anti-cancer strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.