The COVID-19 pandemic caused by SARS-CoV-2 has drawn attention to the need for fast and accurate diagnostic testing. Concerns from emerging SARS-CoV-2 variants and other circulating respiratory viral pathogens further underscore the importance of expanding diagnostic testing to multiplex detection, as single-plex diagnostic testing may fail to detect emerging variants and other viruses, while sequencing can be too slow and too expensive as a diagnostic tool. As a result, there have been significant advances in multiplex nucleic-acid-based virus diagnostic testing, creating a need for a timely review. This review first introduces frequent nucleic acid targets for multiplex virus diagnostic tests, then proceeds to a comprehensive and up-to-date overview of multiplex assays that incorporate various detection reactions and readout modalities. The performances, advantages, and disadvantages of these assays are discussed, followed by highlights of platforms that are amenable for point-of-care use. Finally, this review points out the remaining technical challenges and shares perspectives on future research and development. By examining the state of the art and synthesizing existing development in multiplex nucleic acid diagnostic tests, this review can provide a useful resource for facilitating future research and ultimately combating COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.