Although pioneered by human geneticists as a potential solution to the challenging problem of finding the genetic basis of common human diseases1,2, advances in genotyping and sequencing technology have made genome-wide association (GWA) studies an obvious general approach for studying the genetics of natural variation and traits of agricultural importance. They are particularly useful when inbred lines are available because once these lines have been genotyped, they can be phenotyped multiple times, making it possible (as well as extremely cost-effective) to study many different traits in many different environments, while replicating the phenotypic measurements to reduce environmental noise. Here we demonstrate the power of this approach by carrying out a GWA study of 107 phenotypes in Arabidopsis thaliana, a widely distributed, predominantly selfing model plant, known to harbor considerable genetic variation for many adaptively important traits3. Our results are dramatically different from those of human GWA studies in that we identify many common alleles with major effect, but they are also, in many cases, harder to interpret because confounding by complex genetics and population structure make it difficult to distinguish true from false associations. However, a priori candidates are significantly overrepresented among these associations as well, making many of them excellent candidates for follow-up experiments by the Arabidopsis community. Our study clearly demonstrates the feasibility of GWA studies in A. thaliana, and suggests that the approach will be appropriate for many other organisms.
Population structure causes genome-wide linkage disequilibrium between unlinked loci, leading to statistical confounding in genome-wide association studies. Mixed models have been shown to handle the confounding effects of a diffuse background of large numbers of loci of small effect well, but do not always account for loci of larger effect. Here we propose a multi-locus mixed model as a general method for mapping complex traits in structured populations. Simulations suggest that our method outperforms existing methods, in terms of power as well as false discovery rate. We apply our method to human and Arabidopsis thaliana data, identifying novel associations in known candidates as well as evidence for allelic heterogeneity. We also demonstrate how a priori knowledge from an A. thaliana linkage mapping study can be integrated into our method using a Bayesian approach. Our implementation is computationally efficient, making the analysis of large datasets (n > 10000) practicable.
Arabidopsis thaliana is native to Eurasia and naturalized across the world due to human disturbance. Its easy propagation and immense phenotypic variability make it an ideal model system for functional, ecological and evolutionary genetics. To date, analyses of its natural variation have involved small numbers of individuals or genetic markers. Here we genotype 1,307 world-wide accessions, including several regional samples, at 250K SNPs, enabling us to describe the global pattern of genetic variation with high resolution. Three complementary tests applied to these data reveal novel targets of selection. Furthermore, we characterize the pattern of historical recombination and observe an enrichment of hotspots in intergenic regions and repetitive DNA, consistent with the pattern observed for humans but strikingly different from other plant species. We are making seeds for this Regional Mapping (RegMap) panel publicly available; they comprise the largest genomic mapping resource available for a naturally occurring, non-human, species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.