Rab7 GTPase regulates mitochondrial morphology and function. Missense mutation(s) of Rab7 underlies the pathogenesis of Charcot Marie Tooth 2B (CMT2B) peripheral neuropathy. Herein, we investigate how mitochondrial morphology and function are impacted by the CMT2B associated Rab7V162M mutation. In contrast to recent studies of using heterologous overexpression systems, our results demonstrate significant mitochondrial fragmentation in both human CMT2B patient fibroblasts and CMT2B embryonic fibroblasts (MEFs). Primary cultured E18 dorsal root ganglion (DRG) sensory neurons also show mitochondrial fragmentation and altered axonal mitochondrial movement. In addition, we demonstrate that inhibitors to either the mitochondrial fission protein Drp1 or to the nucleotide binding to Rab7 normalize the mitochondrial deficits in both MEFs and E18 cultured DRG neurons. Our study reveals, for the first time, that expression of CMT2B Rab7 mutation at the physiological level enhances Drp1 activity to promote mitochondrial fission, potentially underlying selective vulnerability of peripheral sensory neurons in CMT2B pathogenesis.
Huntingtons disease (HD) results from a CAG repeat expansion in the gene for Huntington (HTT) resulting in expansion of the polyglutamine (Q) tract in the mutant protein (mHTT). Synaptic changes are early manifestations of neuronal dysfunction in HD. However, the mechanism(s) by which mHTT impacts synapse formation and function is not well defined. Herein we explored HD pathogenesis in the BACHD and the deltaN17-BACHD mouse models of HD by examining cortical synapse formation and function in primary cultures maintained for up to 35 days (DIV35). We identified synapses by immunostaining with antibodies against pre-synaptic (Synapsin 1) and a post-synaptic (PSD95) marker. Consistent with earlier studies, cortical neurons from both WT and the HD models began to form synapses at DIV14; at this age there were no genotypic differences in synapse numbers. However, from DIV21 through DIV35 BACHD neurons showed progressively smaller numbers of synapses relative to WT neurons. Remarkably, BACHD synaptic deficits were completely rescued by treating cultures with BDNF. Building on earlier studies using reagents inspired by the chaperonin TRiC, we found that addition of the recombinant apical domain of CCT1 partially rescued synapse number. Unexpectedly, unlike BACHD cultures, synapses in deltaN17-BACHD cultures showed a progressive increase in number as compared to WT neurons, thus distinguishing synaptic changes in these HD models. Using multielectrode arrays, we discovered age-related functional deficits in BACHD cortical cultures with significant differences present by DIV28. As for synapse number, BDNF treatment prevented most synaptic deficits, including mean firing rate, spikes per burst, inter-burst interval, and synchrony. The apical domain of CCT1 showed similar, albeit less potent effects. These data are evidence that deficits in HD synapse number and function can be replicated in vitro and that treatment with either BDNF or a TRiC-inspired reagent can prevent them. Our findings support the use of cellular models to further explicate HD pathogenesis and its treatments.
Recent evidence has uncovered an important role of Rab7 in regulating mitochondrial morphology and function. Missense mutation(s) of Rab7 underlies the pathogenesis of Charcot Marie Tooth 2B (CMT2B) peripheral neuropathy. Herein, we investigated how mitochondrial morphology and function were impacted by the CMT2B associated Rab7V162M mutation in fibroblasts from human CMT2B patients as well as in a knockin mouse model. In contrast to recently published results from studies of using heterologous overexpression systems, our results have demonstrated significant mitochondrial fragmentation in fibroblasts of both human CMT2B patients and CMT2B mouse embryonic fibroblasts (MEFs). Furthermore, we have shown that mitochondria were fragmented and axonal mitochondrial movement was dysregulated in primary cultured E18 dorsal root ganglion (DRG) sensory neurons, but not in E18 hippocampal and cortical primary neurons. We also show that inhibitors to either the mitochondrial fission protein Drp1 or to the nucleotide binding to Rab7 normalized the mitochondrial deficits in both MEFs and E18 cultured DRG neurons. Our study has revealed, for the first time, that expression of CMT2B Rab7 mutation at physiological level enhances Drp1 activity to promote mitochondrial fission, that may potentially underlie selective vulnerability of peripheral sensory neurons in CMT2B pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.