Multi-Processor Systems-on-a-Chip (MPSoCs) provide sufficient computing power for many applications in scientific as well as embedded applications. Unfortunately, when real-time requirements need to be guaranteed, applications suffer from the interference with other applications, uncertainty of dynamic workload and state of the hardware. Composable application/architecture design and timing analysis is therefore a must for guaranteeing real-time applications to satisfy their timing requirements independent from dynamic workload. Here, Invasive Computing is used as the key enabler for compositional timing analysis on MPSoCs, as it provides the required isolation of resources allocated to each application. On the basis of this paradigm, this work proposes a hybrid application mapping methodology that combines designtime analysis of application mappings with run-time management. Design space exploration delivers several resource reservation configurations with verified real-time guarantees for individual applications. These timing properties can then be guaranteed at run-time, as long as dynamic resource allocations comply with the offline analyzed resource configurations. This article describes our methodology and presents programming, optimization, analysis, and hardware techniques for enforcing timing predictability. A case study illustrates the timing-predictable management of real-time computer vision applications in dynamic robot system scenarios.
We present an X10 software package for the solution of the shallow water equations, a set of equations commonly used to simulate tsunami and flooding events. The software uses an actor-oriented approach to obtain a communication scheme that does not rely on central coordination. Instead, each actor only communicates with its neighbors. We evaluated the package via scaling tests on singleplace shared memory as well as multi-place distributed memory system configurations, and found it to perform comparably to prior implementations based on C++, OpenMP and MPI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.