Outlining a revolutionary reformulation of the foundations of perturbative quantum field theory, this book is a self-contained and authoritative analysis of the application of this new formulation to the case of planar, maximally supersymmetric Yang–Mills theory. The book begins by deriving connections between scattering amplitudes and Grassmannian geometry from first principles before introducing novel physical and mathematical ideas in a systematic manner accessible to both physicists and mathematicians. The principle players in this process are on-shell functions which are closely related to certain sub-strata of Grassmannian manifolds called positroids - in terms of which the classification of on-shell functions and their relations becomes combinatorially manifest. This is an essential introduction to the geometry and combinatorics of the positroid stratification of the Grassmannian and an ideal text for advanced students and researchers working in the areas of field theory, high energy physics, and the broader fields of mathematical physics.
Abstract. The volume and the number of lattice points of the permutohedron Pn are given by certain multivariate polynomials that have remarkable combinatorial properties. We give several different formulas for these polynomials. We also study a more general class of polytopes that includes the permutohedron, the associahedron, the cyclohedron, the Pitman-Stanley polytope, and various generalized associahedra related to wonderful compactifications of De Concini-Procesi. These polytopes are constructed as Minkowski sums of simplices. We calculate their volumes and describe their combinatorial structure. The coefficients of monomials in Vol Pn are certain positive integer numbers, which we call the mixed Eulerian numbers. These numbers are equal to the mixed volumes of hypersimplices. Various specializations of these numbers give the usual Eulerian numbers, the Catalan numbers, the numbers (n + 1) n−1 of trees, the binomial coefficients, etc. We calculate the mixed Eulerian numbers using certain binary trees. Many results are extended to an arbitrary Weyl group.
Recently, Berenstein et al. have proposed a duality between a sector of N = 4 super-Yang-Mills theory with large R-charge J, and string theory in a pp-wave background. In the limit considered, the effective 't Hooft coupling has been argued to be λWe study Yang-Mills theory at small λ ′ (large µ) with a view to reproducing string interactions. We demonstrate that the effective genus counting parameter of the Yang-Mills theory is g4 , the effective two-dimensional Newton constant for strings propagating on the pp-wave background. We identify g 2 √ λ ′ as the effective coupling between a wide class of excited string states on the pp-wave background. We compute the anomalous dimensions of BMN operators at first order in g 2 2 and λ ′ and interpret our result as the genus one mass renormalization of the corresponding string state. We postulate a relation between the three-string vertex function and the gauge theory three-point function and compare our proposal to string field theory. We utilize this proposal, together with quantum mechanical perturbation theory, to recompute the genus one energy shift of string states, and find precise agreement with our gauge theory computation.
Abstract. For a graph G, we construct two algebras whose dimensions are both equal to the number of spanning trees of G. One of these algebras is the quotient of the polynomial ring modulo certain monomial ideal, while the other is the quotient of the polynomial ring modulo certain powers of linear forms. We describe the set of monomials that forms a linear basis in each of these two algebras. The basis elements correspond to G-parking functions that naturally came up in the abelian sandpile model. These ideals are instances of the general class of monotone monomial ideals and their deformations. We show that the Hilbert series of a monotone monomial ideal is always bounded by the Hilbert series of its deformation. Then we define an even more general class of monomial ideals associated with posets and construct free resolutions for these ideals. In some cases these resolutions coincide with Scarf resolutions. We prove several formulas for Hilbert series of monotone monomial ideals and investigate when they are equal to Hilbert series of deformations. In the appendix we discuss the abelian sandpile model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.