Self-assembled metallocages are very promising drug-delivery systems among supramolecular complexes. Thus, exo-functionalized Pd2 L4 (L=ligand) cages were synthesized and characterized, and the encapsulation of the anticancer drug cisplatin in their cavity has been documented. The antiproliferative effects of the metallocages and their combination with cisplatin were examined in vitro in cancer cell lines, while fluorescence microscopy was used to monitor their uptake. Notably, the hydroxymethyl-functionalized Pd(II) cage encapsulating cisplatin showed improved cytotoxic effect against human ovarian cancer cells compared to free cisplatin. The toxicity of Pd2 L4 cages was evaluated for the first time ex vivo in healthy rat-liver tissues using the precision cut-tissue slices technology, demonstrating in some cases scarce effects on liver viability. These results further highlight the potential of self-assembled Pd2 L4 cages for biological applications.
An iron(II) complex with a cyclic tetradentate ligand containing four N-heterocyclic carbenes was synthesized and characterized by means of NMR and IR spectroscopies, as well as by single-crystal X-ray structure analysis. The iron center exhibits an octahedral coordination geometry with two acetonitrile ligands in axial positions, showing structural analogies with porphyrine-ligated iron complexes. The acetonitrile ligands can readily be substituted by other ligands, for instance, dimethyl sulfoxide, carbon monoxide, and nitric oxide. Cyclic voltammetry was used to examine the electronic properties of the synthesized compounds.
The biomedical application of discrete supramolecular metal-based structures, including supramolecular coordination complexes (SCCs), is still an emergent field of study. However, pioneering studies over the last 10 years demonstrated the potential of these supramolecular compounds as novel anticancer drugs, endowed with different mechanisms of action compared to classical small-molecules, often related to their peculiar molecular recognition properties. In addition, the robustness and modular composition of supramolecular metal-based structures allows for an incorporation of different functionalities in the same system to enable imaging in cells via different modalities, but also active tumor targeting and stimuli-responsiveness. Although most of the studies reported so far exploit these systems for therapy, supramolecular metal-based structures may also constitute ideal scaffolds to develop multimodal theranostic agents. Of note, the host-guest chemistry of 3D self-assembled supramolecular structures - within the metallacages family - can also be exploited to design novel drug delivery systems for anticancer chemotherapeutics. In this review, we aim at summarizing the pivotal concepts in this fascinating research area, starting with the main design principles and illustrating representative examples while providing a critical discussion of the state-of-the-art. A section is also included on supramolecular organometallic complexes (SOCs) whereby the (organic) linker is forming the organometallic bond to the metal node, whose biological applications are still to be explored. Certainly, the myriad of possible supramolecular metal-based structures and their almost limitless modularity and tunability suggests that the biomedical applications of such complex chemical entities will continue along this already promising path.
Cyclometalated (C^C*) platinum(II) N-heterocyclic carbene (NHC) complexes are emerging as a new class of phosphorescent emitters for the application in organic light-emitting devices (OLEDs). We present the synthesis of six new complexes of this class to investigate the influence of extended π systems. Therefore, six different NHC ligands with a varying number of additional phenyl substituents were used in combination with the monoanionic acetylacetonate (acac) ligand to obtain complexes of the general formula [(NHC)Pt(II)(acac)]. The complexes were fully characterized by standard techniques and advanced spectroscopic methods ((195)Pt NMR). For all complexes the solid-state structure determination revealed a square-planar coordination of the platinum atom. Absorption and emission spectra were measured in thin amorphous poly(methyl methacrylate) films at room temperature. Four compounds emit in the blue-green region of the visible spectrum with quantum yields of up to 81%.
Herein we report on the catalytic polymerization of diverse Michael-type monomers with high precision by using simple but highly active combinations of phosphorus-containing Lewis bases and organoaluminum compounds. The interacting Lewis pair catalysts enable the control of molecular weight and microstructure of the produced polymers. The reactions show a linear Mn vs consumption plot thus proving a living type polymerization. The initiation has been investigated by end-group analysis with ESI mass spectrometric analysis. With these main-group element Lewis acid base pairs, it is not only possible to polymerize sterically demanding, functionalized as well as heteroatom containing monomers but also, for the first time, to catalytically polymerize extended Michael systems, like 4-vinylpyridine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.