An algorithm of the Monte Carlo method is described which allows evaluation of the effective emissivities of isothermal and nonisothermal specular-diffuse black-body cavities for use in radiometry, photometry and optical pyrometry. The calculation provides estimates of normal spectral effective emissivity for black-body cavities, formed by cone surfaces and a cylinder. It does this for an isothermal cavity and for a cavity having an arbitrary variation of temperature along the cavity length.
State-of-the-art in the application of the Monte Carlo method (MCM) to the computational problems of optical radiometry is discussed. The MCM offers a universal technique for radiation transfer modelling based on the stochastic approach. Developments of the original MCM algorithms and software for calculation of effective emissivities of black bodies, absorption characteristics of cavity radiometers and photometric properties of integrating spheres are used for designing advanced optical instruments. The capabilities of the developed software are illustrated by several examples. The techniques of convergence improvement and special time-saving algorithms are outlined.
An algorithm based on the Monte Carlo method is described that permits the precise calculation of radiant emission characteristics of nonisothermal blackbody cavities for use as standard sources in radiometry, photometry, and radiation thermometry. The algorithm is realized for convex axisymmetric specular-diffuse cavities formed by three conical surfaces. The numerical experiments provide estimates of normal effective emissivities of cylindrical blackbody cavities with flat or conical bottoms for various axisymmetric temperature distributions on the cavity walls.
The precision blackbody sources developed at the All-Russian Institute for Optical and Physical Measurements (Moscow, Russia) and their characteristics are analyzed. The precision high-temperature graphite blackbody BB22p, large-area high-temperature pyrolytic graphite blackbody BB3200pg, middle-temperature graphite blackbody BB2000, low-temperature blackbody BB300, and gallium fixed-point blackbody BB29gl and their characteristics are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.