The growth-fragmentation equation describes a system of growing and dividing particles, and arises in models of cell division, protein polymerisation and even telecommunications protocols. Several important questions about the equation concern the asymptotic behaviour of solutions at large times: at what rate do they converge to zero or infinity, and what does the asymptotic profile of the solutions look like? Does the rescaled solution converge to its asymptotic profile at an exponential speed? These questions have traditionally been studied using analytic techniques such as entropy methods or splitting of operators. In this work, we present a probabilistic approach to the study of this asymptotic behaviour. We use a Feynman-Kac formula to relate the solution of the growth-fragmentation equation to the semigroup of a Markov process, and characterise the rate of decay or growth in terms of this process. We then identify the spectral radius and the asymptotic profile in terms of a related Markov process, and give a spectral interpretation in terms of the growth-fragmentation operator and its dual. In special cases, we obtain exponential convergence.
The self-similar growth-fragmentation equation describes the evolution of a medium in which particles grow and divide as time proceeds, with the growth and splitting of each particle depending only upon its size. The critical case of the equation, in which the growth and division rates balance one another, was considered by Doumic and Escobedo [11] in the homogeneous case where the rates do not depend on the particle size. Here, we study the general self-similar case, using a probabilistic approach based on Lévy processes and positive self-similar Markov processes which also permits us to analyse quite general splitting rates. Whereas existence and uniqueness of the solution are rather easy to establish in the homogeneous case, the equation in the nonhomogeneous case has some surprising features. In particular, using the fact that certain self-similar Markov processes can enter (0, ∞) continuously from either 0 or ∞, we exhibit unexpected spontaneous generation of mass in the solutions.
For any two-sided jumping $\alpha$-stable process, where $1 < \alpha < 2$, we find an explicit identity for the law of the first hitting time of the origin. This complements existing work in the symmetric case and the spectrally one-sided case; cf. Yano-Yano-Yor (2009) and Cordero (2010), and Peskir (2008) respectively. We appeal to the Lamperti-Kiu representation of Chaumont-Pant\'i-Rivero (2011) for real-valued self-similar Markov processes. Our main result follows by considering a vector-valued functional equation for the Mellin transform of the integrated exponential Markov additive process in the Lamperti-Kiu representation. We conclude our presentation with some applications
We consider two first passage problems for stable processes, not necessarily symmetric, in one dimension. We make use of a novel method of path censoring in order to deduce explicit formulas for hitting probabilities, hitting distributions, and a killed potential measure. To do this, we describe in full detail the Wiener-Hopf factorisation of a new Lamperti-stable-type Lévy process obtained via the Lamperti transform, in the style of recent work in this area.
Growth-fragmentation processes describe the evolution of systems of cells which grow continuously and fragment suddenly; they are used in models of cell division and protein polymerisation. Typically, we may expect that in the long run, the concentrations of cells with given masses increase at some exponential rate, and that, after compensating for this, they arrive at an asymptotic profile. Up to now, this question has mainly been studied for the average behavior of the system, often by means of a natural partial integro-differential equation and the associated spectral theory. However, the behavior of the system as a whole, rather than only its average, is more delicate. In this work, we show that a criterion found by one of the authors for exponential ergodicity on average is actually sufficient to deduce stronger results about the convergence of the entire collection of cells to a certain asymptotic profile, and we find some improved explicit conditions for this to occur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.