Chemically engineered and functionalized nanoscale compartments are used in bottom-up synthetic biology to construct compartmentalized chemical processes. Progressively more complex designs demand spatial and temporal control over entrapped species. Here, we address this demand with a DNA-encoded design for the successive fusion of multiple liposome populations. Three individual stages of fusion are induced by orthogonally hybridizing sets of membrane-anchored oligonucleotides. Each fusion event leads to efficient content mixing and transfer of the recognition unit for the subsequent stage. In contrast to fusion-protein-dependent eukaryotic vesicle processing, this artificial fusion cascade exploits the versatile encoding potential of DNA hybridization and is generally applicable to small and giant unilamellar vesicles. This platform could thus enable numerous applications in artificial cellular systems and liposome-based synthetic pathways.
The fusion of biomembranes with release of encapsulated content in a controlled way is crucial for cell signaling, endo- and exocytosis and intracellular trafficking. Programmable fusion of liposomes and an efficient mixing of their contents have the potential to enable the study of chemical and enzymatic processes in a confined environment and under crowded conditions outside biological systems. We report on DNA-controlled fusion of lipid bilayer membranes using lipid-nucleic acid conjugates (LiNAs) to mediate lipid and content mixing of liposomes. Screening of different membrane anchor and linker structures as well as incubation temperatures led to significantly improved fusion and content mixing compared to reported systems. LiNA designs were optimized by changing lipophilic moieties as membrane anchors, PEG-spacer patterns and by introducing locked nucleic acid (LNA) modifications. Liposome fusion induced by complementary LiNAs results in remarkable efficient content mixing at 37 °C and 50 °C (up to 70%) with low leakage (≤5%).
As long as the question of which channels are responsible for cAMP-mediated epithelial Cl- secretion remains unsolved, it is still important to search for specific inhibitors that might help to relate macroscopic to microscopic events. Following the report by Sheppard and Welsh (J Gen Physiol 100: 573, 1992) that glibenclamide inhibits whole-cell Cl- currents in genetically manipulated fibroblasts expressing the cystic fibrosis transmembrane conductance regulator (CFTR), we have studied the effect of glibenclamide on different types of Cl- channels of HT29 and T84 cells at the single-channel level. Our results confirm that micromolar concentrations of glibenclamide inhibit the linear, low-conductance Cl-channel, which appears to represent CFTR and show that the inhibition results from a typical flicker block. However, the same concentrations of glibenclamide inhibit also the outwardly rectifying intermediate conductance Cl- channel which, potentially, may contribute to transepithelial Cl- secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.