Complex network theory provides a powerful toolbox for studying the structure of statistical interrelationships between multiple time series in various scientific disciplines. In this work, we apply the recently proposed climate network approach for characterizing the evolving correlation structure of the Earth's climate system based on reanalysis data for surface air temperatures. We provide a detailed study of the temporal variability of several global climate network characteristics. Based on a simple conceptual view of red climate networks (i.e., networks with a comparably low number of edges), we give a thorough interpretation of our evolving climate network characteristics, which allows a functional discrimination between recently recognized different types of El Niño episodes. Our analysis provides deep insights into the Earth's climate system, particularly its global response to strong volcanic eruptions and large-scale impacts of different phases of the El Niño Southern Oscillation.
El Niño exhibits distinct Eastern Pacific (EP) and Central Pacific (CP) types which are commonly, but not always consistently, distinguished from each other by different signatures in equatorial climate variability. Here we propose an index based on evolving climate networks to objectively discriminate between both flavors by utilizing a scalar‐valued measure that quantifies spatial localization and dispersion in global teleconnections of surface air temperature. Our index displays a sharp peak (high localization) during EP events, whereas during CP events (larger dispersion) it remains close to the values observed during normal periods. In contrast to previous classification schemes, our approach specifically accounts for El Niño's global impacts. We confirm recent El Niño classifications for the years 1951 to 2014 and assign types to those cases where former works yielded ambiguous results. Ultimately, we demonstrate that our index provides a similar discrimination of La Niña episodes into two distinct types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.