Using the continuum model for low energy non-interacting electronic structure of moiré van der Waals heterostructures developed by Bistritzer and MacDonald [1] , we study the competition between spin, charge, and superconducting order in twisted bilayer graphene. Surprisingly, we find that for a range of small angles inclusive of the so-called magic angle, this model features robust Fermi pockets that preclude any Mott insulating phase at weak coupling. However, a Fermi surface reconstruction at θ 1.2 • gives emergent van Hove singularities without any Fermi pockets. Using a hot-spot model for Fermi surface patches around these emergent saddle points, we develop a random-phase approximation from which we obtain a phase diagram very similar to that obtained recently by Isobe, Yuan, and Fu using the parquet renormalization group [2] but with additional insights. For example, our model shows strong nesting around time-reversal symmetric points at a moderate doping of ∼ 2 × 10 11 cm −2 away from the van Hove singularity. When this nesting dominates, we predict that charge-order enhances singlet superconductivity, while spin-order suppresses superconductivity. Our theory also provides additional possibilities for the case of unnested Fermi surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.