This article presents a model for traffic incident prediction. Specifically, we address the fundamental problem of data scarcity in road traffic accident prediction by training our model on emergency braking events instead of accidents. Based on relevant risk factors for traffic accidents and corresponding data categories, we evaluate different options for preprocessing sparse data and different Machine Learning models. Furthermore, we present a prototype implementing a traffic incident prediction model for Germany based on emergency braking data from Mercedes-Benz vehicles as well as weather, traffic and road data, respectively. After model evaluation and optimisation, we found that a Random Forest model trained on artificially balanced (under-sampled) data provided the highest classification accuracy of 85% on the original imbalanced data. Finally, we present our conclusions and discuss further work; from gathering more data over a longer period of time to build stronger classification systems, to addition of internal factors such as the driver's visual and cognitive attention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.