Positive or negative patterns of co‐occurrence might imply an influence of biotic interactions on community structure. However, species may co‐occur simply because of shared environmental responses. Here, we apply two complementary modelling methodologies – a probabilistic model of significant pairwise associations and a hierarchical multivariate probit regression model – to 1) attribute co‐occurrence patterns in 100 river bird communities to either shared environmental responses or to other ecological mechanisms such as interaction with heterospecifics, and 2) examine the strength of evidence for four alternative models of community structure. Species co‐occurred more often than would be expected by random community assembly and the species composition of bird communities was highly structured. Co‐occurrence patterns were primarily explained by shared environmental responses; species’ responses to the environmental variables were highly divergent, with both strong positive and negative environmental correlations occurring. We found limited evidence for behaviour‐driven assemblage patterns in bird communities at a large spatial scale, although statistically significant positive associations amongst some species suggested the operation of facilitative mechanisms such as heterospecific attraction. This lends support to an environmental filtering model of community assembly as being the principle mechanism shaping river bird community structure. Consequently, species interactions may be reduced to an ancillary role in some avifaunal communities, meaning if shared environmental responses are not quantified studies of co‐occurrence may overestimate the role of species interactions in shaping community structure.
River flow is a major driver of morphological structure and community dynamics in riverine-floodplain ecosystems. Flow influences in-stream communities through changes in water velocity, depth, temperature, turbidity and nutrient fluxes, and perturbations in the organisation of lower trophic levels are cascaded through the food web, resulting in shifts in food availability for consumer species. River birds are sensitive to spatial and phenological mismatches with aquatic prey following flow disturbances; however, the role of flow as a determinant of riparian ecological structure remains poorly known. This knowledge is crucial to help to predict if, and how, riparian communities will be influenced by climate-induced changes in river flow characterised by more extreme high (i.e. flood) and/or low (i.e. drought) flow events. Here, we combine national-scale datasets of river bird surveys and river flow archives to understand how hydrological disturbance has affected the distribution of riparian species at higher trophic levels. Data were analysed for 71 river locations using a Generalized Additive Model framework and a model averaging procedure. Species had complex but biologically interpretable associations with hydrological indices, with species’ responses consistent with their ecology, indicating that hydrological-disturbance has implications for higher trophic levels in riparian food webs. Our quantitative analysis of river flow-bird relationships demonstrates the potential vulnerability of riparian species to the impacts of changing flow variability and represents an important contribution in helping to understand how bird communities might respond to a climate change-induced increase in the intensity of floods and droughts. Moreover, the success in relating parameters of river flow variability to species’ distributions highlights the need to include river flow data in climate change impact models of species’ distributions.
Abstract. Anthropogenic forcing of the climate is causing an intensification of the global water cycle, leading to an increase in the frequency and magnitude of floods and droughts. River flow shapes the ecology of riverine ecosystems and climate-driven changes in river flows are predicted to have severe consequences for riverine species, across all levels of trophic organization. However, understanding species' responses to variation in flow is limited through a lack of quantitative modelling of hydroecological interactions. Here, we construct a Bioclimatic Envelope Model (BEM) ensemble based on a suite of plausible future flow scenarios to show how predicted alterations in flow regimes may alter the distribution of a predatory riverine species, the White-throated Dipper (Cinclus cinclus). Models predicted a gradual diminution of dipper probability of occurrence between present day and 2098. This decline was most rapid in western areas of Great Britain and was principally driven by a projected decrease in flow magnitude and variability around low flows. Climate-induced changes in river flow may, therefore, represent a previously unidentified mechanism by which climate change may mediate range shifts in birds and other riverine biota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.