In studies of phylogeography and taxonomy, strong emphasis is usually placed on the study of mitochondrial (mt)DNA. In the present study, we present a remarkable case in which highly phenotypically divergent species have almost no divergence in mtDNA. Yellowhammers (Emberiza citrinella Linnaeus) and pine buntings (Emberiza leucocephalos S. G. Gmelin) differ noticeably in appearance and song but hybridize in some areas of contact. They share a variety of closely-related mtDNA haplotypes, with little divergence in frequencies, indicating a mitochondrial divergence time sometime during or after the last major glacial period. By contrast, nuclear DNA (amplified fragment length polymorphism markers and CHD1Z gene sequences) differs more strongly between the species, and these differences can be used to identify intermediate genetic signatures of hybrids. The combined amount of mitochondrial diversity within yellowhammers and pine buntings is very low compared to other Emberiza species pairs, whereas the level of variation at the nuclear gene CHD1Z is comparable to that within other species pairs. Although it is difficult to completely reject the possibility that the two species split extremely recently and experienced rapid nuclear and phenotypic differentiation, we argue that the evidence better supports another possibility: the two species are older and mtDNA has recently introgressed between them, most likely as a result of a selective sweep. Mismatches between mitochondrial and nuclear phylogeographic patterns may occur more commonly than previously considered, and could have important implications for the fields of phylogeography and taxonomy.
Hybrid zones are geographic regions where isolating barriers between divergent populations are challenged by admixture. Identifying factors that facilitate or inhibit hybridization in sympatry can illuminate the processes that maintain those reproductive barriers. We analysed patterns of hybridization and phenotypic variation across two newly discovered hybrid zones between three subspecies of barn swallow (Hirundo rustica). These subspecies differ in ventral coloration and wing length, traits that are targets of sexual and natural selection, respectively, and are associated with genome-wide differentiation in allopatry. We tested the hypothesis that the degree of divergence in these traits is associated with the extent of hybridization in secondary contact. We applied measures of population structure based on >23,000 SNPs to confirm that named subspecies correspond to distinct genomic clusters, and assessed coincidence between geographic clines for ancestry and phenotype. Although gene flow was ongoing across both hybrid zones and pairwise F between subspecies was extremely low, we found striking differences in the extent of hybridization. In the more phenotypically differentiated subspecies pair, clines for ancestry, wing length and ventral coloration were steep and coincident, suggestive of strong isolation and, potentially, selection associated with phenotype. In the less phenotypically differentiated pair, gene flow and phenotypic variation occurred over a wide geographic span, indicative of weaker isolation. Traits associated with genome-wide differentiation in allopatry may thus also contribute to isolation in sympatry. We discuss potentially important additional roles for evolutionary history and ecology in shaping variation in the extent hybridization between closely related pairs of subspecies.
Migratory divides are proposed to be catalysts for speciation across a diversity of taxa. However, it is difficult to test the relative contributions of migratory behaviour vs. other divergent traits to reproductive isolation. Comparing hybrid zones with and without migratory divides offers a rare opportunity to directly examine the contribution of divergent migratory behaviour to reproductive barriers. We show that across replicate sampling transects of two pairs of barn swallow (Hirundo rustica) subspecies, strong reproductive isolation coincided with a migratory divide spanning 20 degrees of latitude. A third subspecies pair exhibited no evidence for a migratory divide and hybridised extensively. Within migratory divides, overwintering habitats were associated with assortative mating, implicating a central contribution of divergent migratory behaviour to reproductive barriers. The remarkable geographic coincidence between migratory divides and genetic breaks supports a long‐standing hypothesis that the Tibetan Plateau is a substantial barrier contributing to the diversity of Siberian avifauna.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.