Density functional theory (DFT) is one of the most widely used tools to solve the many-body Schrodinger equation. The core uncertainty inside DFT theory is the exchange-correlation (XC) functional, the exact form of which is still unknown. Therefore, the essential part of DFT success is based on the progress in the development of XC approximations. Traditionally, they are built upon analytic solutions in low- and high-density limits and result from quantum Monte Carlo numerical calculations. However, there is no consistent and general scheme of XC interpolation and functional representation. Many different developed parametrizations mainly utilize a number of phenomenological rules to construct a specific XC functional. In contrast, the neural network (NN) approach can provide a general way to parametrize an XC functional without any a priori knowledge of its functional form. In this work, we develop NN XC functionals and prove their applicability to 3-dimensional physical systems. We show that both the local density approximation (LDA) and generalized gradient approximation (GGA) are well reproduced by the NN approach. It is demonstrated that the local environment can be easily considered by changing only the number of neurons in the first layer of the NN. The developed NN XC functionals show good results when applied to systems that are not presented in the training/test data. The generalizability of the formulated NN XC framework leads us to believe that it could give superior results in comparison with traditional XC schemes provided training data from high-level theories such as the quantum Monte Carlo and post-Hartree-Fock methods.
Kirkpatrick
et al
. (Reports, 9 December 2021, p. 1385) trained a neural network–based DFT functional, DM21, on fractional-charge (FC) and fractional-spin (FS) systems, and they claim that it has outstanding accuracy for chemical systems exhibiting strong correlation. Here, we show that the ability of DM21 to generalize the behavior of such systems does not follow from the published results and requires revisiting.
In this work we present nablaDFT, the new dataset and benchmark for the Density Functional Theory Hamiltonian and energy prediction. We provide data for over 1 million different molecules and over 5 million conformations and baseline models for both tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.