The role of neutrophils in tuberculosis (TB) resistance and pathology is poorly understood. Neutrophil reactions are meant to target the offending pathogen but may lead to destruction of the host lung tissue, making the defending cells an enemy. Here, we show that mice of the I/St strain which are genetically susceptible to TB show an unusually high and prolonged neutrophil accumulation in their lungs after intratracheal infection. Compared to neutrophils from more resistant A/Sn mice, I/St neutrophils display an increased mobility and tissue influx, prolonged lifespan, low expression of the CD95 (Fas) apoptotic receptor, relative resistance to apoptosis, and an increased phagocytic capacity for mycobacteria. Segregation genetic analysis in (I/St ؋ A/Sn)F 2 hybrids indicates that the alleles of I/St origin at the chromosome 3 and 17 quantitative trait loci which are involved in the control of TB severity also determine a high level of neutrophil influx. These features, along with the poor ability of neutrophils to restrict mycobacterial growth compared to that of lung macrophages, indicate that the prevalence of neutrophils in TB inflammation contributes to the development of pathology, rather than protection of the host, and that neutrophils may play the role of a "Trojan horse" for mycobacteria.
Mycobacterium tuberculosis contains five genes, rpfA through rpfE, that bear significant homology to the resuscitation-promoting factor (rpf) gene of Micrococcus luteus, whose product is required to resuscitate the growth of dormant cultures of M. luteus and is essential for the growth of this organism. Previous studies have shown that deletion of any one of the five rpf-like genes did not affect the growth or survival of M. tuberculosis in vitro. In conjunction with the results of whole-genome expression profiling, this finding was indicative of their functional redundancy. In this study, we demonstrate that the single deletion mutants are phenotypically similar to wild-type M. tuberculosis H37Rv in vivo. The deletion of individual rpf-like genes had no discernible effect on the growth or long-term survival of M. tuberculosis in liquid culture, and the ability to resuscitate spontaneously from a nonculturable state in a most probable number assay was also unaffected for the three strains tested (the ⌬rpfB, ⌬rpfD, and ⌬rpfE strains). In contrast, two multiple strains, KDT8 (⌬rpfA-mutation ⌬rpfC ⌬rpfB) and KDT9 (⌬rpfA ⌬rpfC ⌬rpfD), which lack three of the five rpf-like genes, were significantly yet differentially attenuated in a mouse infection model. These mutants were also unable to resuscitate spontaneously in vitro, demonstrating the importance of the Rpf-like proteins of M. tuberculosis in resuscitation from the nonculturable state. These results strongly suggest that the biological functions of the five rpf-like genes of M. tuberculosis are not wholly redundant and underscore the potential utility of these proteins as targets for therapeutic intervention.The majority of individuals infected with Mycobacterium tuberculosis harbor a clinically latent infection in which the organism is able to persist or remain dormant within an otherwise healthy individual for prolonged periods of time (15). In a relatively small proportion of these individuals, the infection may reactivate to cause active disease. Since it is estimated that one-third of the world's population is latently infected with M. tuberculosis, the implications of reactivation tuberculosis for the global burden of disease are alarming (5). The molecular mechanisms by which M. tuberculosis persists or remains dormant and reactivates are poorly understood (12, 15) and may be attributed to the host immune response and/or the physiology of the organism itself.M. tuberculosis encodes a family of five proteins that bear significant similarity to the resuscitation promoting factor (Rpf) of Micrococcus luteus, which is a secreted protein essential for growth of this organism (9, 10). Studies on the growth stimulation and reactivation of cultures of M. luteus, Mycobacterium smegmatis, Mycobacterium bovis BCG, and M. tuberculosis by M. luteus Rpf and other Rpf-like proteins strongly suggest that one or more of the M. tuberculosis Rpf-like proteins may play similar roles in mycobacterial growth and/or reactivation of latent infection (8, 10, 13). However, it was...
The disaccharide trehalose is the major free sugar in the cytoplasm of mycobacteria; it is a constituent of cell wall glycolipids, and it plays a role in mycolic acid transport during cell wall biogenesis. The pleiotropic role of trehalose in the biology of Mycobacterium tuberculosis and its absence from mammalian cells suggests that its biosynthesis may provide a useful target for novel drugs. However, there are three potential pathways for trehalose biosynthesis in M. tuberculosis, and the aim of the present study was to introduce mutations into each of the pathways to determine whether or not they are functionally redundant. The results show that the OtsAB pathway, which generates trehalose from glucose and glucose-6-phosphate, is the dominant pathway required for M. tuberculosis growth in laboratory culture and for virulence in a mouse model. Of the two otsB homologues annotated in the genome sequence of M. tuberculosis, only OtsB2 (Rv3372) has a functional role in the pathway. OtsB2, trehalose-6-phosphate phosphatase, is strictly essential for growth and provides a tractable target for high throughput screening. Inactivation of the TreYZ pathway, which can generate trehalose from ␣-1,4-linked glucose polymers, had no effect on the growth of M. tuberculosis in vitro or in mice. Deletion of the treS gene altered the late stages of pathogenesis of M. tuberculosis in mice, significantly increasing the time to death in a chronic infection model. Because the TreS enzyme catalyzes the interconversion of trehalose and maltose, the mouse phenotype could reflect either a requirement for synthesis of additional trehalose or, conversely, a requirement for breakdown of stored trehalose to liberate free glucose.
Genetic factors play a role in host response to infection with Mycobacterium tuberculosis, the number one infectious killer worldwide. Mice of the inbred strains I/St and A/Sn show significant differences in disease severity after intravenous injection of a lethal dose of the virulent human isolate M. tuberculosis H37Rv. Following challenge with H37Rv, only I/St mice have rapid body weight loss and short survival times. A genome wide analysis for linkage with body weight after M. tuberculosis H37Rv infection was done in (A/SnxI/St)F1xI/St mice. Among females, quantitative trait loci (QTLs) on chromosomes 9 and 3 were significantly linked to postinfection body weight (logarithm of the odds ratio [LOD] scores of 6.68 and 3.92, respectively). Suggestive linkages were found for QTLs on chromosomes 8 and 17 (LOD scores of 3.01 and 2.95, respectively). For males, QTLs on chromosomes 5 and 10 showed suggestive linkages (LOD scores of 3.03 and 2.31, respectively). These linkages can be used to identify candidate regions for tuberculosis susceptibility loci in the human genome.
Genetic control of susceptibility to tuberculosis (TB) is being intensively studied, and immune responses to mycobacteria are considerably well characterized. However, it remains largely unknown which parameters of response distinguish resistant and susceptible TB phenotypes. Mice of I/St and A/Sn inbred strains and (A/Sn × I/St)F1 hybrids were previously categorized as, respectively, susceptible, resistant, and hyperresistant to Mycobacterium tuberculosis-triggered disease. In the present work we compared parameters of lung T cell activation and response following M. tuberculosis challenge. In all mice, the disease progression was accompanied by a marked accumulation in the lungs of activated CD4+ (CD44high/CD45RBlow) and CD8+ (CD44high/CD45RB+) T cells capable of secreting IFN-γ and of activating macrophages for NO production and mycobacterial growth inhibition. However, significantly more CD8+ T cells were accumulated in the lungs of resistant A/Sn and F1 compared with I/St mice. About 80% A/Sn and F1 CD8+ cells expressed CD44high/CD45RB+ phenotype, while about 40% I/St CD8+ cells did not express CD45RB marker at week 5 of infection. In contrast, in susceptible I/St mice lung CD4+ cells proliferated much more strongly in response to mycobacterial sonicate, and a higher proportion of these cells expressed CD95 and underwent apoptosis compared with A/Sn cells. Unseparated lung cells and T cells of I/St origin produced more IL-5 and IL-10, respectively, whereas their A/Sn and F1 counterparts produced more IFN-γ following infection. F1 cells overall expressed an intermediate phenotype between the two parental strains. Such a more balanced type of immune reactivity could be linked to a better TB defense.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.