Metal halide perovskites represent a flourishing area of research, which is driven by both their potential application in photovoltaics and optoelectronics and by the fundamental science behind their unique optoelectronic properties. The emergence of new colloidal methods for the synthesis of halide perovskite nanocrystals, as well as the interesting characteristics of this new type of material, has attracted the attention of many researchers. This review aims to provide an up-to-date survey of this fast-moving field and will mainly focus on the different colloidal synthesis approaches that have been developed. We will examine the chemistry and the capability of different colloidal synthetic routes with regard to controlling the shape, size, and optical properties of the resulting nanocrystals. We will also provide an up-to-date overview of their postsynthesis transformations, and summarize the various solution processes that are aimed at fabricating halide perovskite-based nanocomposites. Furthermore, we will review the fundamental optical properties of halide perovskite nanocrystals by focusing on their linear optical properties, on the effects of quantum confinement, and on the current knowledge of their exciton binding energies. We will also discuss the emergence of nonlinear phenomena such as multiphoton absorption, biexcitons, and carrier multiplication. Finally, we will discuss open questions and possible future directions.
Organometal halide perovskites have recently emerged displaying a huge potential for not only photovoltaic, but also light emitting applications. Exploiting the optical properties of specifically tailored perovskite nanocrystals could greatly enhance the efficiency and functionality of applications based on this material. In this study, we investigate the quantum size effect in colloidal organometal halide perovskite nanoplatelets. By tuning the ratio of the organic cations used, we can control the thickness and consequently the photoluminescence emission of the platelets. Quantum mechanical calculations match well with the experimental values. We find that not only do the properties of the perovskite, but also those of the organic ligands play an important role. Stacking of nanoplatelets leads to the formation of minibands, further shifting the bandgap energies. In addition, we find a large exciton binding energy of up to several hundreds of meV for nanoplatelets thinner than three unit cells, partially counteracting the blueshift induced by quantum confinement. Understanding of the quantum size effects in perovskite nanoplatelets and the ability to tune them provide an additional method with which to manipulate the optical properties of organometal halide perovskites.
Solar illumination of broadly absorbing metal or carbon nanoparticles dispersed in a liquid produces vapor without the requirement of heating the fluid volume. When particles are dispersed in water at ambient temperature, energy is directed primarily to vaporization of water into steam, with a much smaller fraction resulting in heating of the fluid. Sunlight-illuminated particles can also drive H(2)O-ethanol distillation, yielding fractions significantly richer in ethanol content than simple thermal distillation. These phenomena can also enable important compact solar applications such as sterilization of waste and surgical instruments in resource-poor locations.
The easily tunable emission of halide perovskite nanocrystals throughout the visible spectrum makes them an extremely promising material for light-emitting applications. Whereas high quantum yields and long-term colloidal stability have already been achieved for nanocrystals emitting in the red and green spectral range, the blue region currently lags behind with low quantum yields, broad emission profiles, and insufficient colloidal stability. In this work, we present a facile synthetic approach for obtaining two-dimensional CsPbBr nanoplatelets with monolayer-precise control over their thickness, resulting in sharp photoluminescence and electroluminescence peaks with a tunable emission wavelength between 432 and 497 nm due to quantum confinement. Subsequent addition of a PbBr-ligand solution repairs surface defects likely stemming from bromide and lead vacancies in a subensemble of weakly emissive nanoplatelets. The overall photoluminescence quantum yield of the blue-emissive colloidal dispersions is consequently enhanced up to a value of 73 ± 2%. Transient optical spectroscopy measurements focusing on the excitonic resonances further confirm the proposed repair process. Additionally, the high stability of these nanoplatelets in films and to prolonged ultraviolet light exposure is shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.