A central problem of random matrix theory is to understand the eigenvalues of spiked random matrix models, introduced by Johnstone, in which a prominent eigenvector (or "spike") is planted into a random matrix. These distributions form natural statistical models for principal component analysis (PCA) problems throughout the sciences. Baik, Ben Arous and Péché showed that the spiked Wishart ensemble exhibits a sharp phase transition asymptotically: when the spike strength is above a critical threshold, it is possible to detect the presence of a spike based on the top eigenvalue, and below the threshold the top eigenvalue provides no information. Such results form the basis of our understanding of when PCA can detect a low-rank signal in the presence of noise. However, under structural assumptions on the spike, not all information is necessarily contained in the spectrum. We study the statistical limits of tests for the presence of a spike, including non-spectral tests. Our results leverage Le Cam's notion of contiguity, and include: i) For the Gaussian Wigner ensemble, we show that PCA achieves the optimal detection threshold for certain natural priors for the spike. ii) For any non-Gaussian Wigner ensemble, PCA is sub-optimal for detection. However, an efficient variant of PCA achieves the optimal threshold (for natural priors) by pre-transforming the matrix entries. iii) For the Gaussian Wishart ensemble, the PCA threshold is optimal for positive spikes (for natural priors) but this is not always the case for negative spikes. * The first two authors contributed equally.
These notes survey and explore an emerging method, which we call the low-degree method, for predicting and understanding statistical-versus-computational tradeoffs in high-dimensional inference problems. In short, the method posits that a certain quantity -the second moment of the low-degree likelihood ratio -gives insight into how much computational time is required to solve a given hypothesis testing problem, which can in turn be used to predict the computational hardness of a variety of statistical inference tasks. While this method originated in the study of the sum-of-squares (SoS) hierarchy of convex programs, we present a self-contained introduction that does not require knowledge of SoS. In addition to showing how to carry out predictions using the method, we include a discussion investigating both rigorous and conjectural consequences of these predictions.These notes include some new results, simplified proofs, and refined conjectures. For instance, we point out a formal connection between spectral methods and the low-degree likelihood ratio, and we give a sharp low-degree lower bound against subexponential-time algorithms for tensor PCA.
Various alignment problems arising in cryo-electron microscopy, community detection, time synchronization, computer vision, and other fields fall into a common framework of synchronization problems over compact groups such as Z=L, U.1/, or SO.3/. The goal in such problems is to estimate an unknown vector of group elements given noisy relative observations. We present an efficient iterative algorithm to solve a large class of these problems, allowing for any compact group, with measurements on multiple "frequency channels" (Fourier modes, or more generally, irreducible representations of the group). Our algorithm is a highly efficient iterative method following the blueprint of approximate message passing (AMP), which has recently arisen as a central technique for inference problems such as structured low-rank estimation and compressed sensing. We augment the standard ideas of AMP with ideas from representation theory so that the algorithm can work with distributions over general compact groups. Using standard but nonrigorous methods from statistical physics, we analyze the behavior of our algorithm on a Gaussian noise model, identifying phases where we believe the problem is easy, (computationally) hard, and (statistically) impossible. In particular, such evidence predicts that our algorithm is information-theoretically optimal in many cases, and that the remaining cases exhibit statistical-to-computational gaps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.