Vapor phase deposited iron oxide nanostructures are promising for fabrication of solid state chemical sensors, photoelectrodes for solar water splitting, batteries, and logic devices. The deposition of iron oxide via chemical vapor deposition (CVD) or atomic layer deposition (ALD) under mild conditions necessitates a precursor that comprises good volatility, stability, and reactivity. Here, a versatile iron precursor, namely [bis(N‐isopropylketoiminate) iron(II)], which possesses ideal characteristics both for low‐temperature CVD and water‐assisted ALD processes, is reported. The films are thoroughly investigated toward phase, composition, and morphology. As‐deposited ALD grown Fe2O3 layers are amorphous, while the CVD process in the presence of oxygen leads to polycrystalline hematite layers. The nanostructured iron oxide grown via CVD consists of nanoplatelets that are appealing for photoelectrochemical applications. Preliminary tests of the photoelectrocatalytic activity of CVD‐grown Fe2O3 layers show photocurrent densities up to 0.3 mA cm−2 at 1.2 V versus reversible hydrogen electrode (RHE) and 1.2 mA cm−2 at 1.6 V versus RHE under simulated sunlight (1 sun). Surface modification by cobalt oxyhydroxide (Co‐Pi) co‐catalyst is found to have a highly beneficial effect on photocurrent, leading to maximum monochromatic quantum efficiencies of 10% at 400 nm and 4% at 500 nm at 1.5 V versus RHE.
In this paper, a direct chemical vapor deposition (CVD) approach is applied for the first time to synthesize high quality copper oxide (CuO), copper tungstate (CuWO4) and tungsten oxide (WO3) on F:SnO2 (FTO) substrates for photocatalytic water splitting.
Fabrication of three-dimensional metal-organic framework (MOF) thin films has been investigated for the first time through the conversion of a ZnO layer via a pure vapour-solid deposition reaction at ambient pressure. The fabrication of MOF thin films with a dicarboxylate linker, (DMA)2[Zn3(bdc)4] (1) (bdc = 1,4-benzenedicarboxylate), and a carboxy-pyrazolate linker, [Zn4O(dmcapz)6] (2) (dmcapz = 3,5-dimethyl-4-carboxypyrazole), involves the deposition of the linker and/or the preparation of a composite film preliminarily and its subsequent conversion into a MOF film using closed cell thermal treatment. Furthermore, it was possible to isolate thin films with a MOF-5 isotype structure grown along the [110] direction, using a carboxy-pyrazolate linker. This was achieved just by the direct reaction of the ZnO film and the organic linker vapors, employing a simple route that demonstrates the feasibility of MOF thin film fabrication using inexpensive routes at ambient pressure.
The temporal evolution of photogenerated carriers in CuWO4, CuO and WO3 thin films deposited via a direct chemical vapor deposition approach was studied using time-resolved microwave conductivity and terahertz spectroscopy to obtain the photocarrier lifetime, mobility and diffusion length. The carrier transport properties of the films prepared by varying the copper-to-tungsten stoichiometry were compared and the results related to the performance of the compositions built into respective photoelectrochemical cells. Superior carrier mobility was observed for CuWO4 under frontside illumination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.